Home
Class 12
MATHS
Verify mean value theorem for the functi...

Verify mean value theorem for the function `f(x)=sqrt(25-x^(2))` in `[1,5]`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the Mean Value Theorem (MVT) for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\), we will follow these steps: ### Step 1: Check Continuity The function \( f(x) = \sqrt{25 - x^2} \) is defined when \( 25 - x^2 \geq 0 \). This implies: \[ x^2 \leq 25 \implies -5 \leq x \leq 5 \] Since the interval \([1, 5]\) is a subset of \([-5, 5]\), the function is continuous on \([1, 5]\). ### Step 2: Check Differentiability Next, we need to check if \( f(x) \) is differentiable on the interval \((1, 5)\). We find the derivative using the chain rule: \[ f'(x) = \frac{d}{dx} \left( \sqrt{25 - x^2} \right) = \frac{1}{2\sqrt{25 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{25 - x^2}} \] The derivative \( f'(x) \) exists for all \( x \) in the interval \((1, 5)\) since \( 25 - x^2 > 0 \) in this interval. Therefore, \( f(x) \) is differentiable on \((1, 5)\). ### Step 3: Apply Mean Value Theorem According to the Mean Value Theorem, there exists at least one point \( c \) in the interval \((1, 5)\) such that: \[ f'(c) = \frac{f(b) - f(a)}{b - a} \] where \( a = 1 \) and \( b = 5 \). #### Step 3.1: Calculate \( f(a) \) and \( f(b) \) \[ f(1) = \sqrt{25 - 1^2} = \sqrt{24} \] \[ f(5) = \sqrt{25 - 5^2} = \sqrt{0} = 0 \] #### Step 3.2: Compute the Right-Hand Side \[ \frac{f(b) - f(a)}{b - a} = \frac{0 - \sqrt{24}}{5 - 1} = \frac{-\sqrt{24}}{4} = -\frac{\sqrt{24}}{4} = -\frac{\sqrt{4 \cdot 6}}{4} = -\frac{2\sqrt{6}}{4} = -\frac{\sqrt{6}}{2} \] ### Step 4: Set the Derivative Equal to the Right-Hand Side Now, we set \( f'(c) \) equal to the computed value: \[ f'(c) = \frac{-c}{\sqrt{25 - c^2}} = -\frac{\sqrt{6}}{2} \] This leads to the equation: \[ \frac{c}{\sqrt{25 - c^2}} = \frac{\sqrt{6}}{2} \] ### Step 5: Solve for \( c \) Cross-multiplying gives: \[ 2c = \sqrt{6} \sqrt{25 - c^2} \] Squaring both sides: \[ 4c^2 = 6(25 - c^2) \] \[ 4c^2 = 150 - 6c^2 \] \[ 10c^2 = 150 \] \[ c^2 = 15 \] \[ c = \sqrt{15} \quad (\text{since } c \text{ must be positive}) \] ### Conclusion Since \( \sqrt{15} \) is approximately \( 3.87 \), which is in the interval \((1, 5)\), we have verified the Mean Value Theorem for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\).

To verify the Mean Value Theorem (MVT) for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\), we will follow these steps: ### Step 1: Check Continuity The function \( f(x) = \sqrt{25 - x^2} \) is defined when \( 25 - x^2 \geq 0 \). This implies: \[ x^2 \leq 25 \implies -5 \leq x \leq 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in [0,1]

Verify Rolles theorem for the function f(x)=sqrt(4-x^(2)) on [-2,2]

Verify Lagranges mean value theorem for function f(x)=sqrt(25-x^2) on [-3,\ 4] and find a point ' c ' in the indicated interval:

Verify mean value theorem for the function f(x) = 1/(4x-1) in [1,4]

Verify Lagrange's Mean Value Theorem for the functions : f(x)=sqrt(25-x^(2)) in the interval [-3, 4].

Find c of the Lagrange's mean value theorem for which f(x)=sqrt(25-x^(2)) in [1, 5] .

Verify mean value theorem for the function f(x)=x^(2)+4x-3 in the interval [-2,2]

Verify the mean value theorem for the function f(x)=x^(2) in the interval [2,4]

Verify Lagranges mean value theorem for function f(x)=sqrt(x^2-4) on [2,\ 4] and find a point ' c ' in the indicated interval:

Find the value of c prescribed by Lagranges mean value theorem for the function f(x)=sqrt(x^2-4) defined on [2,\ 3] .

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in...

    Text Solution

    |

  2. Verify Rolles theorem for function f(x)=sinx-sin2x on [0,\ pi]

    Text Solution

    |

  3. Verify mean value theorem for the function f(x)=sqrt(25-x^(2)) in [1,...

    Text Solution

    |

  4. Find the point on the parabola y=(x-3)^2, where the tangent is p...

    Text Solution

    |

  5. Using mean value theorem, prove that there is a point on the curve y...

    Text Solution

    |

  6. Find the values of aa n db so that the function f(x)={x^2+3x+a ,ifxlt=...

    Text Solution

    |

  7. If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

    Text Solution

    |

  8. If x=sint ,y=sinp t ,"p r o v et h a t" (1-x^2)(d^2y)/(dx^2)-x(dy)/...

    Text Solution

    |

  9. If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy)/(dx)

    Text Solution

    |

  10. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  11. The function f(x) = (4-x^(2))/(4x-x^(3)) is

    Text Solution

    |

  12. The set of points where the function f given by f(x) = |2x-1| sinx ...

    Text Solution

    |

  13. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  14. The function f(x) = e^(|x|) is

    Text Solution

    |

  15. if f(x)=x^2sin(1/x) , x!=0 then the value of the function f at x=0 so...

    Text Solution

    |

  16. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  17. If f(x) = |sinx|, then

    Text Solution

    |

  18. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  19. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  20. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |