Home
Class 12
MATHS
If y = log ((1-x^(2))/(1+x^(2))), then...

If ` y = log ((1-x^(2))/(1+x^(2)))`, then `(dy)/(dx)` is equal to

A

` (4x^(3))/(1-x^(4))`

B

`(-4x)/(1-x^(4))`

C

` (1)/(4-x^(4))`

D

`(-4x^(3))/(1-x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 2: Apply the logarithmic property Using the property of logarithms, we can rewrite this as: \[ y = \log(1 - x^2) - \log(1 + x^2) \] ### Step 3: Differentiate using the chain rule Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\log(1 - x^2)] - \frac{d}{dx}[\log(1 + x^2)] \] Using the chain rule, we have: \[ \frac{d}{dx}[\log(u)] = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u \) is the function inside the logarithm. ### Step 4: Differentiate each term 1. For \( \log(1 - x^2) \): - Let \( u = 1 - x^2 \), then \( \frac{du}{dx} = -2x \). - Thus, \( \frac{d}{dx}[\log(1 - x^2)] = \frac{1}{1 - x^2} \cdot (-2x) = \frac{-2x}{1 - x^2} \). 2. For \( \log(1 + x^2) \): - Let \( v = 1 + x^2 \), then \( \frac{dv}{dx} = 2x \). - Thus, \( \frac{d}{dx}[\log(1 + x^2)] = \frac{1}{1 + x^2} \cdot (2x) = \frac{2x}{1 + x^2} \). ### Step 5: Combine the derivatives Now we can combine the results: \[ \frac{dy}{dx} = \frac{-2x}{1 - x^2} - \frac{2x}{1 + x^2} \] ### Step 6: Find a common denominator The common denominator for the two fractions is \( (1 - x^2)(1 + x^2) \): \[ \frac{dy}{dx} = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 - x^2)(1 + x^2)} \] ### Step 7: Simplify the numerator Now simplify the numerator: \[ -2x(1 + x^2) - 2x(1 - x^2) = -2x - 2x^3 - 2x + 2x^3 = -4x \] ### Step 8: Final expression for the derivative Thus, we have: \[ \frac{dy}{dx} = \frac{-4x}{(1 - x^2)(1 + x^2)} = \frac{-4x}{1 - x^4} \] ### Conclusion The final answer is: \[ \frac{dy}{dx} = \frac{-4x}{1 - x^4} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y= log [x + sqrt(9 + x^(2))], "then" (dy)/(dx) is equal to

If y = log_(2) log_(2) (x) , " then " (dy)/(dx) is equal to

If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

If y=log sqrt((1+sin^(2)x)/(1-sin^(2)x)), then find (dy)/(dx)

If x=y ln(xy), then (dy)/(dx) equals

If y = x^(log x) , then (dy)/(dx) equals

If log _(10) ((x^(2) - y^(2))/(x^(2) + y^(2))) = 2 , " then" (dy)/(dx) is equal to

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  2. If f(x) = |sinx|, then

    Text Solution

    |

  3. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  4. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  5. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  6. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  7. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  8. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  9. An example of a function which is continuous every where but fails to...

    Text Solution

    |

  10. Derivative of x^(2) w.r.t. x^(3) is

    Text Solution

    |

  11. If f(x) = |cosx|, then f'(pi/4) is equal to "……."

    Text Solution

    |

  12. For the curve sqrt(x)+sqrt(y)=1 , (dy)/(dx) at (1//4,\ 1//4) is 1//2 (...

    Text Solution

    |

  13. Rolle's theorem is applicable for the function f(x) = |x-1| in [0,2].

    Text Solution

    |

  14. If f is continuous on its domain D; then |f| is also continuous on D

    Text Solution

    |

  15. If f is continuous on its domain D; then |f| is also continuous on D

    Text Solution

    |

  16. The composition of two continuous function is a continuous function.

    Text Solution

    |

  17. Trigonometric and inverse trigonometric functions are differentiable ...

    Text Solution

    |

  18. If f.g is continuous at x = 0 , then f and g are separately continuou...

    Text Solution

    |

  19. Examine contnuity of the function f(x) = x^(3) + 2x^(2)- 1 at x = 1.

    Text Solution

    |

  20. f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):}at x = 2

    Text Solution

    |