Home
Class 10
MATHS
On a square cardboard sheet of area 784 ...

On a square cardboard sheet of area `784 cm^(2)` , four congruent circular plates of maximum size are placed such that each circular plate touches the other two plates and each side of the square sheet is tangent to two circular plates. Find the area of the square not covered by the circular plates.

Text Solution

AI Generated Solution

To solve the problem step by step, we will follow these calculations: ### Step 1: Find the side length of the square cardboard sheet. Given the area of the square cardboard sheet is \(784 \, \text{cm}^2\). The formula for the area of a square is: \[ \text{Area} = \text{side}^2 ...
Promotional Banner

Topper's Solved these Questions

  • AREAS RELATED TO CIRCLE

    NCERT EXEMPLAR|Exercise Long Answer Type Questions|3 Videos
  • ARITHMETIC PROGRESSIONS

    NCERT EXEMPLAR|Exercise Arithmetic Progressions|71 Videos

Similar Questions

Explore conceptually related problems

The perimeter of a circular plate is 132 cm. Find its area

Two plates made of the same material and thickness are joined as shown. One plate is circular and another square in shape. The diameter of circular plate is equal to the side of the square plane. Locate c.m.

A circular metal plate of radius 10 cm is given a charge of 20muC . The outward pull on the plate in the vacuum is

Two equal maximum sized circular plates are cut off from a circular paper sheet of circumference 352 cm. Then the circumference of each circular plat is

50 circular plates,each of radius 7cm and thickness 0.5cm are placed one above the other to form a solid right circular cylinder. Find the total surface area and the volume of the cylinder so formed.

There are two circular flower beds on two sides of a square lawn ABCD of side 56m .If the centre of each circular flower bed is the point of intersection of the diagonals of the square lawn,find the sum of the areas of the lawn and the flower beds.

Mass Center of a sector of a uniform circular plate Find location of mass center of a sector of a thin uniform plate.