Home
Class 9
MATHS
Simiplify : (16xx2^(n+1)-4xx2^(n))/(16...

Simiplify :
`(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `(16 * 2^(n+1) - 4 * 2^n) / (16 * 2^(n+2) - 2 * 2^(n+1))`, we will follow these steps: ### Step 1: Rewrite the expression using properties of exponents We can rewrite the terms in the numerator and denominator using the property of exponents, which states that \( a^{m+n} = a^m \cdot a^n \). **Numerator:** - \( 16 * 2^{n+1} = 16 * 2^n * 2^1 = 16 * 2^n * 2 \) - \( 4 * 2^n = 4 * 2^n \) So, the numerator becomes: \[ 16 * 2^n * 2 - 4 * 2^n = 2^n (16 * 2 - 4) \] **Denominator:** - \( 16 * 2^{n+2} = 16 * 2^n * 2^2 = 16 * 2^n * 4 \) - \( 2 * 2^{n+1} = 2 * 2^n * 2 = 2^{n+1} * 2 = 2^n * 2^2 \) So, the denominator becomes: \[ 16 * 2^n * 4 - 2 * 2^n * 2 = 2^n (16 * 4 - 2 * 2) \] ### Step 2: Substitute back into the expression Now substituting back into the expression, we have: \[ \frac{2^n (16 * 2 - 4)}{2^n (16 * 4 - 4)} \] ### Step 3: Cancel out the common factor Since \( 2^n \) is common in both the numerator and denominator, we can cancel it out: \[ \frac{16 * 2 - 4}{16 * 4 - 4} \] ### Step 4: Simplify the terms Now we simplify the terms: - Numerator: \( 16 * 2 - 4 = 32 - 4 = 28 \) - Denominator: \( 16 * 4 - 4 = 64 - 4 = 60 \) So, we have: \[ \frac{28}{60} \] ### Step 5: Reduce the fraction Now we can reduce the fraction \( \frac{28}{60} \): - The greatest common divisor (GCD) of 28 and 60 is 4. - Dividing both the numerator and denominator by 4 gives: \[ \frac{28 \div 4}{60 \div 4} = \frac{7}{15} \] ### Final Answer Thus, the simplified expression is: \[ \frac{7}{15} \] ---

To simplify the expression `(16 * 2^(n+1) - 4 * 2^n) / (16 * 2^(n+2) - 2 * 2^(n+1))`, we will follow these steps: ### Step 1: Rewrite the expression using properties of exponents We can rewrite the terms in the numerator and denominator using the property of exponents, which states that \( a^{m+n} = a^m \cdot a^n \). **Numerator:** - \( 16 * 2^{n+1} = 16 * 2^n * 2^1 = 16 * 2^n * 2 \) - \( 4 * 2^n = 4 * 2^n \) ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1e|18 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1c|14 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Simplify :(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))

Simplify: frac(16 xx 2^(n+1)-4 xx 2^(n))(16 xx 2^(n+2)-2 xx 2^(n+2)).

(16*2^(n+1)-4*2^(n))/(16*2^(n+2)-2*2^(n+2))

Simplify: frac(16 xx 2^(n+1)-8 xx 2^(n))(16 xx 2^(n+2)-4 xx 2^(n+1))

(5^(n+2)-6xx5^(n+1))/(13xx5^(n)-2xx5^(n+1))

Simplify: (3^5)^(11)xx(3^(15))^4-(3^5)^(18)xx(3^5)^5 , (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

Simplify each of the following: (a)\ (7^n-3\ xx\ 7^(n+1))/(20\ xx\ 7^n-2\ xx\ 7^n) (b)\ (5^n-6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2xx\ 5^n) (c)\ (16\ xx\ 2^(n+1)-4\ xx\ 2^n)/(16\ xx\ 2^(n+2)-2\ xx\ 2^(n+2))

(3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))