Home
Class 9
MATHS
Simplify (1)/((625)^(-1//4))....

Simplify `(1)/((625)^(-1//4))`.

A

5

B

`1/5`

C

25

D

`1/25`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{1}{(625)^{-\frac{1}{4}}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1}{(625)^{-\frac{1}{4}}} \] Using the property of exponents that states \( a^{-n} = \frac{1}{a^n} \), we can rewrite the denominator: \[ (625)^{-\frac{1}{4}} = \frac{1}{(625)^{\frac{1}{4}}} \] Thus, we can rewrite the entire expression as: \[ \frac{1}{\frac{1}{(625)^{\frac{1}{4}}}} = (625)^{\frac{1}{4}} \] ### Step 2: Evaluate \( (625)^{\frac{1}{4}} \) Next, we need to calculate \( (625)^{\frac{1}{4}} \). We know that: \[ 625 = 5^4 \] So we can substitute \( 625 \) with \( 5^4 \): \[ (625)^{\frac{1}{4}} = (5^4)^{\frac{1}{4}} \] Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we have: \[ (5^4)^{\frac{1}{4}} = 5^{4 \cdot \frac{1}{4}} = 5^1 = 5 \] ### Final Answer Thus, the simplified form of \( \frac{1}{(625)^{-\frac{1}{4}}} \) is: \[ \boxed{5} \]

To simplify the expression \( \frac{1}{(625)^{-\frac{1}{4}}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1}{(625)^{-\frac{1}{4}}} \] Using the property of exponents that states \( a^{-n} = \frac{1}{a^n} \), we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1e|18 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Simplify : (1)/((27)^(-(1)/(3)))+(1)/((625)^(-(1)/(4)))

(1) Simplify (1)/((27)^(-(1)/(3)))+(1)/((625)^(-(1)/(4)))*(2) find the smallest of the numbers 6^((1)/(3)),24(1)/(4),8^((1)/(4))

Simplify: 1+(-4)/(5)

Simplify : ((1)/(2)x(1)/(4))+((1)/(2)x6)

14." Simplify "1(1)/(4)-6_(2)^(1)

Simplify: ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))

Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1/4))