Home
Class 11
MATHS
Convert ((2+3i)^(2))/(2-i) in the form o...

Convert `((2+3i)^(2))/(2-i)` in the form of `a+ib` and find its conjugate.

Text Solution

AI Generated Solution

The correct Answer is:
To convert \(\frac{(2 + 3i)^2}{2 - i}\) into the form \(a + ib\) and find its conjugate, we will follow these steps: ### Step 1: Calculate \((2 + 3i)^2\) Using the formula \((a + b)^2 = a^2 + 2ab + b^2\): \[ (2 + 3i)^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 \] \[ = 4 + 12i + 9i^2 \] Since \(i^2 = -1\): \[ = 4 + 12i - 9 = -5 + 12i \] ### Step 2: Substitute back into the expression Now, substitute \((2 + 3i)^2\) back into the expression: \[ \frac{(2 + 3i)^2}{2 - i} = \frac{-5 + 12i}{2 - i} \] ### Step 3: Multiply by the conjugate of the denominator To simplify \(\frac{-5 + 12i}{2 - i}\), we multiply the numerator and the denominator by the conjugate of the denominator, which is \(2 + i\): \[ \frac{(-5 + 12i)(2 + i)}{(2 - i)(2 + i)} \] ### Step 4: Calculate the denominator Calculate the denominator: \[ (2 - i)(2 + i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] ### Step 5: Calculate the numerator Now calculate the numerator: \[ (-5 + 12i)(2 + i) = -5 \cdot 2 + (-5) \cdot i + 12i \cdot 2 + 12i \cdot i \] \[ = -10 - 5i + 24i + 12i^2 \] \[ = -10 + 19i + 12(-1) = -10 + 19i - 12 = -22 + 19i \] ### Step 6: Combine the results Now we can combine the results: \[ \frac{-22 + 19i}{5} = -\frac{22}{5} + \frac{19}{5}i \] Thus, in the form \(a + ib\): \[ a = -\frac{22}{5}, \quad b = \frac{19}{5} \] ### Step 7: Find the conjugate The conjugate of a complex number \(a + ib\) is \(a - ib\). Therefore, the conjugate of \(-\frac{22}{5} + \frac{19}{5}i\) is: \[ -\frac{22}{5} - \frac{19}{5}i \] ### Final Answer The expression \(\frac{(2 + 3i)^2}{2 - i}\) in the form \(a + ib\) is: \[ -\frac{22}{5} + \frac{19}{5}i \] And its conjugate is: \[ -\frac{22}{5} - \frac{19}{5}i \]

To convert \(\frac{(2 + 3i)^2}{2 - i}\) into the form \(a + ib\) and find its conjugate, we will follow these steps: ### Step 1: Calculate \((2 + 3i)^2\) Using the formula \((a + b)^2 = a^2 + 2ab + b^2\): \[ (2 + 3i)^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5A|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Convert ((1)/(2)+2i)^(3) in the form of a+ib .

Express (2+3i)/(2-i) in the form a+ib

Express (2+i)/(2-i) in the form a+ib

Convert (1+3i)/(1-2i) into the polar form.

Express: ((1+i)^(3))/(4+3i) in the form a+ib

Convert [(3+2i)/( 3-2i)+ (3 -2i)/(3+2i)] in the form of (a+ib) .

Express ( 4 - 5/2 i)^(2) in the form of a + ib.

Express ( 1/3 + 4/3 i)^(2) in the form of a + ib.

Express (2 + 3i)^(3) in the form (a + ib).

NAGEEN PRAKASHAN-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Convert ((2+3i)^(2))/(2-i) in the form of a+ib and find its conjugate.

    Text Solution

    |

  2. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  3. Prove that Re (z1 z2)= Re z1 Re z2 - Imz1 Imz2 ,

    Text Solution

    |

  4. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  5. If (a+i b)/(c+i d)=x+i y , prove that (a-i b)/(c-i d)=x-i ya n d(a^2+b...

    Text Solution

    |

  6. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  7. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  8. x^(2)-2x+(3)/(2)=0

    Text Solution

    |

  9. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  10. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  11. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  12. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  13. Let z1=2-i ,z2=-2+i. Find (i) Re ((z1z2)/( bar z1)) (ii) Im(1/(z1 bar...

    Text Solution

    |

  14. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  15. Find the real numbers x\ a n d\ y , if (x-i y)(3+5i) is the conjugate ...

    Text Solution

    |

  16. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i).

    Text Solution

    |

  17. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  18. If alpha and beta are different complex number with |beta|=1, then f...

    Text Solution

    |

  19. Find the number of non-zero integral solutions of the equation |1-i|^...

    Text Solution

    |

  20. If (a + i b) (c + i d) (e + i f) (g + i h) = A + i B, then show that (...

    Text Solution

    |

  21. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |