Home
Class 11
MATHS
Find the values of x and y from the foll...

Find the values of `x` and `y` from the following : (i) `(3x -7)+2iy=-5y+(5+ x)i` (ii) `2x i+12= 3y-6i` (iii)`z=x+iy and i(z+2)+1=0` (iv)`((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i` (v) ` (3x-2iy)(2+i)^(2)=10(1+i)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step, we will break down each part and find the values of \( x \) and \( y \). ### Part (i) Given: \[ (3x - 7) + 2iy = -5y + (5 + x)i \] We can separate the real and imaginary parts: - Real part: \( 3x - 7 = -5y \) - Imaginary part: \( 2y = 5 + x \) **Step 1:** Solve the first equation for \( y \): \[ 3x - 7 = -5y \implies 5y = -3x + 7 \implies y = \frac{-3x + 7}{5} \] **Step 2:** Substitute \( y \) into the second equation: \[ 2\left(\frac{-3x + 7}{5}\right) = 5 + x \] Multiply through by 5 to eliminate the fraction: \[ 2(-3x + 7) = 5(5 + x) \implies -6x + 14 = 25 + 5x \] Combine like terms: \[ -6x - 5x = 25 - 14 \implies -11x = 11 \implies x = -1 \] **Step 3:** Substitute \( x = -1 \) back into the equation for \( y \): \[ y = \frac{-3(-1) + 7}{5} = \frac{3 + 7}{5} = \frac{10}{5} = 2 \] **Values found:** \( x = -1, y = 2 \) ### Part (ii) Given: \[ 2xi + 12 = 3y - 6i \] Separate real and imaginary parts: - Real part: \( 12 = 3y \) - Imaginary part: \( 2x = -6 \) **Step 1:** Solve for \( y \): \[ 3y = 12 \implies y = 4 \] **Step 2:** Solve for \( x \): \[ 2x = -6 \implies x = -3 \] **Values found:** \( x = -3, y = 4 \) ### Part (iii) Given: \[ z = x + iy \quad \text{and} \quad i(z + 2) + 1 = 0 \] Substituting for \( z \): \[ i(x + iy + 2) + 1 = 0 \implies i(x + 2 + iy) + 1 = 0 \] Distributing \( i \): \[ ix + 2i - y + 1 = 0 \] Separate real and imaginary parts: - Real part: \( 1 - y = 0 \implies y = 1 \) - Imaginary part: \( x + 2 = 0 \implies x = -2 \) **Values found:** \( x = -2, y = 1 \) ### Part (iv) Given: \[ \frac{(1+i)x - 2i}{3+i} + \frac{(2-3i)y + i}{3-i} = i \] Multiply both sides by the common denominator \( (3+i)(3-i) = 10 \): \[ 10\left(\frac{(1+i)x - 2i}{3+i} + \frac{(2-3i)y + i}{3-i}\right) = 10i \] This simplifies to: \[ (1+i)x - 2i + (2-3i)y + i = 10i \] Combine like terms: \[ (1+i)x + (2-3i)y - i = 10i \] Separate real and imaginary parts: - Real part: \( x + 2y = 10 \) - Imaginary part: \( x - 3y - 1 = 10 \) **Step 1:** Solve the first equation for \( y \): \[ y = \frac{10 - x}{2} \] **Step 2:** Substitute into the second equation: \[ x - 3\left(\frac{10 - x}{2}\right) - 1 = 10 \] Multiply through by 2: \[ 2x - 3(10 - x) - 2 = 20 \implies 2x - 30 + 3x - 2 = 20 \] Combine: \[ 5x - 32 = 20 \implies 5x = 52 \implies x = \frac{52}{5} \] **Step 3:** Substitute \( x \) back to find \( y \): \[ y = \frac{10 - \frac{52}{5}}{2} = \frac{\frac{50 - 52}{5}}{2} = \frac{-2/5}{2} = -\frac{1}{5} \] **Values found:** \( x = \frac{52}{5}, y = -\frac{1}{5} \) ### Part (v) Given: \[ (3x - 2iy)(2+i)^2 = 10(1+i) \] Calculate \( (2+i)^2 \): \[ (2+i)^2 = 4 + 4i - 1 = 3 + 4i \] Substituting: \[ (3x - 2iy)(3 + 4i) = 10 + 10i \] Distributing: \[ (3x)(3 + 4i) - (2iy)(3 + 4i) = 10 + 10i \] Separate real and imaginary parts: - Real part: \( 9x + 8y = 10 \) - Imaginary part: \( 12x - 6y = 10 \) **Step 1:** Solve the first equation for \( y \): \[ 8y = 10 - 9x \implies y = \frac{10 - 9x}{8} \] **Step 2:** Substitute into the second equation: \[ 12x - 6\left(\frac{10 - 9x}{8}\right) = 10 \] Multiply through by 8: \[ 96x - 6(10 - 9x) = 80 \implies 96x - 60 + 54x = 80 \] Combine: \[ 150x = 140 \implies x = \frac{14}{15} \] **Step 3:** Substitute \( x \) back to find \( y \): \[ y = \frac{10 - 9\left(\frac{14}{15}\right)}{8} = \frac{10 - \frac{126}{15}}{8} = \frac{\frac{150 - 126}{15}}{8} = \frac{\frac{24}{15}}{8} = \frac{24}{120} = \frac{2}{10} = \frac{1}{5} \] **Values found:** \( x = \frac{14}{15}, y = \frac{1}{5} \) ### Summary of Values 1. Part (i): \( x = -1, y = 2 \) 2. Part (ii): \( x = -3, y = 4 \) 3. Part (iii): \( x = -2, y = 1 \) 4. Part (iv): \( x = \frac{52}{5}, y = -\frac{1}{5} \) 5. Part (v): \( x = \frac{14}{15}, y = \frac{1}{5} \)

To solve the given equations step by step, we will break down each part and find the values of \( x \) and \( y \). ### Part (i) Given: \[ (3x - 7) + 2iy = -5y + (5 + x)i \] We can separate the real and imaginary parts: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the real values of x and y if (i)(3x-7)+2iy=-5y+(5+x)i (ii) (x+iy)(2-3i)=(4+i)

Find the real value of x and y if ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i

Find the real values of x and y, if (3x-7)+2iy=-5y+(5+x)i

Find the real values of x and y,quad if :(x+iy)(2-3i)=4+i

Find the real values of x and y,quad if quad :(1+i)(x+iy)=2-5i

Find the real values of x and y,quad if :((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=

((x+iy)/(2+3i)+(2+i)/(2-3i)=(9)/(13)(1+i)

(x+iy)(2-3i)=4+i

Find the value of x and y if (i)3x+(2x-y)i=6-3i( ii) 3x+5yi=5i

NAGEEN PRAKASHAN-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Find the multiplicative inverse of the following complex number: (2+sq...

    Text Solution

    |

  2. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  3. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  4. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  5. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  6. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  7. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  8. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  9. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  10. If = (a^(2) + 1)^(2)/(2a-i)=x+iy," then when is the value of " x^(2)+...

    Text Solution

    |

  11. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  12. The complex number z is purely imaginary , if

    Text Solution

    |

  13. If a^2+b^2=1.Then (1+b+ia)/(1+b-ia)=

    Text Solution

    |

  14. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  15. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  16. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  17. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |