Home
Class 11
MATHS
If z(1)=2-i, z(2)=1+ 2i, then find the ...

If ` z_(1)=2-i, z_(2)=1+ 2i,` then find the value of the following :
(i) `Re((z_(1)*z_(2))/(bar(z)_(2)))`
(ii) ` Im (z_(1)*bar(z)_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will find the required values for both parts (i) and (ii). ### Given: - \( z_1 = 2 - i \) - \( z_2 = 1 + 2i \) ### Part (i): Find \( \text{Re}\left(\frac{z_1 z_2}{\overline{z_2}}\right) \) **Step 1:** Find the conjugate of \( z_2 \). \[ \overline{z_2} = 1 - 2i \] **Step 2:** Compute the product \( z_1 z_2 \). \[ z_1 z_2 = (2 - i)(1 + 2i) \] Using the distributive property: \[ = 2 \cdot 1 + 2 \cdot 2i - i \cdot 1 - i \cdot 2i \] \[ = 2 + 4i - i + 2 \] \[ = 4 + 3i \] **Step 3:** Now compute \( \frac{z_1 z_2}{\overline{z_2}} \). \[ \frac{z_1 z_2}{\overline{z_2}} = \frac{4 + 3i}{1 - 2i} \] **Step 4:** Multiply the numerator and denominator by the conjugate of the denominator. \[ = \frac{(4 + 3i)(1 + 2i)}{(1 - 2i)(1 + 2i)} \] Calculating the denominator: \[ (1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5 \] Calculating the numerator: \[ (4 + 3i)(1 + 2i) = 4 \cdot 1 + 4 \cdot 2i + 3i \cdot 1 + 3i \cdot 2i \] \[ = 4 + 8i + 3i - 6 = -2 + 11i \] **Step 5:** Now we have: \[ \frac{z_1 z_2}{\overline{z_2}} = \frac{-2 + 11i}{5} = -\frac{2}{5} + \frac{11}{5}i \] **Step 6:** Find the real part. \[ \text{Re}\left(\frac{z_1 z_2}{\overline{z_2}}\right) = -\frac{2}{5} \] ### Part (ii): Find \( \text{Im}(z_1 \overline{z_2}) \) **Step 1:** Compute \( z_1 \overline{z_2} \). \[ z_1 \overline{z_2} = (2 - i)(1 - 2i) \] Using the distributive property: \[ = 2 \cdot 1 - 2 \cdot 2i - i \cdot 1 + i \cdot 2i \] \[ = 2 - 4i - i - 2 \] \[ = 0 - 5i \] **Step 2:** Find the imaginary part. \[ \text{Im}(z_1 \overline{z_2}) = -5 \] ### Final Answers: (i) \( \text{Re}\left(\frac{z_1 z_2}{\overline{z_2}}\right) = -\frac{2}{5} \) (ii) \( \text{Im}(z_1 \overline{z_2}) = -5 \) ---

To solve the given problem step by step, we will find the required values for both parts (i) and (ii). ### Given: - \( z_1 = 2 - i \) - \( z_2 = 1 + 2i \) ### Part (i): Find \( \text{Re}\left(\frac{z_1 z_2}{\overline{z_2}}\right) \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Let z_(1)=2-i,z_(2)=-2+i* Find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) (ii) Im quad ((1)/(z_(1)bar(z)_(1)))

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

if z_(1)=2-i, and z_(2) = 1+ i, then find Im(1/(z_(1)z_(2)))

If z_(1)=1+i,z_(2)=1-i then (z_(1))/(z_(2)) is

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) and z_(2) are 1-i,-2+4i respectively find Im((z_(1)z_(2))/(bar(z)_(1)))

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

Let |z_(1)|=1, |z_(2)|=2, |z_(3)|=3 and z_(1)+z_(2)+z_(3)=3+sqrt5i , then the value of Re(z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equalto (where z_(1), z_(2) and z_(3) are complex numbers)

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

NAGEEN PRAKASHAN-COMPLEX NUMBERS AND QUADRATIC EQUATION -EXERCISE 5B
  1. Find the multiplicative inverse of the following complex number: (2+sq...

    Text Solution

    |

  2. Write the following in the form of ordered pair : (i) 3-2i (ii)...

    Text Solution

    |

  3. Convert the following in the form of a complex number : (i) (2, -5)...

    Text Solution

    |

  4. Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+...

    Text Solution

    |

  5. If z=1+2i, show that z^(2)-2z+5=0. Hence find the value of z^(3) +7z^...

    Text Solution

    |

  6. Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

    Text Solution

    |

  7. If z(1)=2-i, z(2)=1+ 2i, then find the value of the following : (i)...

    Text Solution

    |

  8. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  9. (x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

    Text Solution

    |

  10. If = (a^(2) + 1)^(2)/(2a-i)=x+iy," then when is the value of " x^(2)+...

    Text Solution

    |

  11. Write the least positive integral value of n for which ((1+i)/(1-i))^n...

    Text Solution

    |

  12. The complex number z is purely imaginary , if

    Text Solution

    |

  13. If a^2+b^2=1.Then (1+b+ia)/(1+b-ia)=

    Text Solution

    |

  14. Find the real values of theta for which the complex number (1+i costhe...

    Text Solution

    |

  15. Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) ...

    Text Solution

    |

  16. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  17. The sum and product of two complex numbers are real if and only if the...

    Text Solution

    |

  18. If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove th...

    Text Solution

    |

  19. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  20. Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

    Text Solution

    |