Home
Class 11
MATHS
If |z1|=|z2|=|z3|=......=|zn|=1, then ...

If `|z_1|=|z_2|=|z_3|=......=|z_n|=1`, then `|z_1+z_2+z_3+......+z_n|=`

A

`n`

B

`|(1)/(z)+(1)/(z_(2))+...+(1)/(z_(n))|`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5E|10 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|=|z_(3)|=......=|z_(n)|=1, then |z_(1)+z_(2)+z_(3)+......+z_(n)|=

If |z_1|=|z_2|=.=|z_n|=1, then the value of |z_1+z_2+z_3+..+z_n| is equal to (A) 1 (B) |z_1|+|z_2|+z_3|+…..+|z_n| (C) |1/z_1+1/z_2+1/z_3+……….+1/z_n| (D) n

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296

If z_(1),z_(2).........z_(n)=z, then arg z_(1)+arg z_(2)+......+argz_(n) and arg z differ by a

Let z_(1),z_(2),z_(3),...,z_(n) be non zero complex numbers with |z_(1)|=|z_(2)|=|z_(3)|...=|z_(n)| then the number z=((z_(1)+z_(2))(z_(2)+z_(3))(z_(3)+z_(4))...(z_(n-1)+z_(n))(z_(n)+z_(1)))/(z_(1)z_(2)z_(3)...z_(n)) is

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

Suppose z_1 + z_2 + z_3 + z_4=0 and |z_1| = |z_2| = |z_3| = |z_4|=1. If z_1, z_2, z_3 ,z_4 are the vertices of a quadrilateral, then the quadrilateral can be a (a) parallelogram (c) rectangle (b) rhombus (d) square