Home
Class 12
MATHS
I:(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....log(...

`I:(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....log_(e)2`
`II:(1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+....=2log_(e)2-1`

A

only I is true

B

only II is true

C

both I and II are true

D

neither I nor II true

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(2.3)+(1)/(4.5)+(1)/(6.7)+……oo=

I:2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...]=log_(e)2 II:2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=log_(e)2

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

1+(1)/(2!)+(1.3)/(4!)+(1.3.5)/(6!)+...=

(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+(1)/(4.5^(4))+.......=

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

(1+(1)/(2!)+(1)/(4!)+(1)/(6!)+....)^(2)-(1+(1)/(3!)+(1)/(5!)+(1)/(7!)+....)^(2)=

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =