Home
Class 11
MATHS
Find the real numbers x and y if (x-i y...

Find the real numbers `x` and `y` if `(x-i y)(3+5i)` is the conjugate of `-6-24 i`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the real numbers \( x \) and \( y \) such that \( (x - iy)(3 + 5i) \) is the conjugate of \( -6 - 24i \). ### Step-by-Step Solution: 1. **Identify the Conjugate**: The conjugate of a complex number \( a + bi \) is given by \( a - bi \). Therefore, the conjugate of \( -6 - 24i \) is: \[ -6 + 24i \] 2. **Set Up the Equation**: We need to set up the equation: \[ (x - iy)(3 + 5i) = -6 + 24i \] 3. **Multiply the Left Side**: Now, we will multiply \( (x - iy)(3 + 5i) \): \[ (x - iy)(3 + 5i) = x \cdot 3 + x \cdot 5i - iy \cdot 3 - iy \cdot 5i \] Simplifying this, we have: \[ = 3x + 5xi - 3yi - 5y(-1) = 3x + 5xi + 5y - 3yi \] Rearranging gives: \[ = (3x + 5y) + (5x - 3y)i \] 4. **Equate Real and Imaginary Parts**: Now we equate the real and imaginary parts from both sides: - Real part: \( 3x + 5y = -6 \) (Equation 1) - Imaginary part: \( 5x - 3y = 24 \) (Equation 2) 5. **Solve the System of Equations**: We have the following system of equations: \[ \begin{align*} 3x + 5y &= -6 \quad \text{(1)} \\ 5x - 3y &= 24 \quad \text{(2)} \end{align*} \] We can use the elimination method. First, we can multiply Equation (1) by 3 and Equation (2) by 5 to eliminate \( y \): \[ \begin{align*} 9x + 15y &= -18 \quad \text{(3)} \\ 25x - 15y &= 120 \quad \text{(4)} \end{align*} \] 6. **Add the Two Equations**: Adding Equations (3) and (4): \[ 9x + 15y + 25x - 15y = -18 + 120 \] This simplifies to: \[ 34x = 102 \] Therefore: \[ x = \frac{102}{34} = 3 \] 7. **Substitute \( x \) Back to Find \( y \)**: Now substitute \( x = 3 \) back into Equation (1): \[ 3(3) + 5y = -6 \] This simplifies to: \[ 9 + 5y = -6 \implies 5y = -6 - 9 \implies 5y = -15 \implies y = -3 \] 8. **Final Answer**: The values of \( x \) and \( y \) are: \[ x = 3, \quad y = -3 \]

To solve the problem, we need to find the real numbers \( x \) and \( y \) such that \( (x - iy)(3 + 5i) \) is the conjugate of \( -6 - 24i \). ### Step-by-Step Solution: 1. **Identify the Conjugate**: The conjugate of a complex number \( a + bi \) is given by \( a - bi \). Therefore, the conjugate of \( -6 - 24i \) is: \[ -6 + 24i ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.4|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the real numbers x and y, if (x-iy)(3+5i) is the conjugate of -6-24i

(a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii) -sqrt(5)-sqrt(7)i (iv) -sqrt(5)i (v) (4)/(5) (vi) 49-(i)/(7) (vii) (1-i)/(1+i) (viii) (1+i)^(2) (ix) (2+5i)^(2) (x) (-2-(1)/(3)i)^(3) (b) Find the real number x and y if: (i) (x-iy)(3+5i) is the conjugate of -6-24 i (ii) -3+ix^(2)y and x^(2)+y+4i are congugate of each other.

Find real number x and y if (x-iy)(4 + 7i) is the conjugate of 29-2i.

Find the conjugate of 1/(3-5i)

Find the real values of x and y,quad if :(x+iy)(2-3i)=4+i

Find the real values of x and y, if (3x-7)+2iy=-5y+(5+x)i

Find the conjugate of i/(3+5i)

Find the real values of xandy, if (3x-7)+2iy=-5y+(5+x)i

Find the conjugate of (3+i)/(2+5i)

Find x and y if: (x+iy)(2+3i)=4+i

NCERT-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-MISCELLANEOUS EXERCISE
  1. If x + i y =sqrt((a+i b)/(c+i d)) prove that (x^2+y^2)^2=(a^2+b^2)/(c^...

    Text Solution

    |

  2. Find the number of non-zero integral solutions of the equation |1-i|^...

    Text Solution

    |

  3. If (a + i b) (c + i d) (e + if) (g + i h) = A + i B, then show that (a...

    Text Solution

    |

  4. Let z1=2-i ,z2=-2+i. Find Re ((z1z2)/( bar z'1))

    Text Solution

    |

  5. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  6. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  7. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  8. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  9. Find the real numbers x and y if (x-i y)(3+5i) is the conjugate of -6...

    Text Solution

    |

  10. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i).

    Text Solution

    |

  11. If (x+i y)^3=u+i v ,then Find p if u/x+v/y=p(x^2-y^2).

    Text Solution

    |

  12. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) ...

    Text Solution

    |

  13. Solve the equation :x^2-2x+3/2=0

    Text Solution

    |

  14. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  15. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  16. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  17. For any two complex numbers z1and z2, prove that Re(z1z2)=Re(z1) Re(z2...

    Text Solution

    |

  18. Solve the equation :21 x^2-28 x+10=0

    Text Solution

    |

  19. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  20. If ((1+i)/(1-i))^m=1,then find the least integral value of m.

    Text Solution

    |