Home
Class 11
PHYSICS
Two wires are made of the same material ...

Two wires are made of the same material and have the same volume. However wire 1 has cross-sectional area A and wire 2 has cross-sectional area 3A. If the length of wire 1 increases by `Deltax` on applying force F, how much force is needed to stretch wire 2 by the same amount?

A

F

B

4F

C

6F

D

9F

Text Solution

Verified by Experts

The correct Answer is:
B

(b) Solids are least compressible whereas gases are most compressible.
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    DC PANDEY|Exercise Check point 12.3|15 Videos
  • ELASTICITY

    DC PANDEY|Exercise Chapter Exercise|73 Videos
  • ELASTICITY

    DC PANDEY|Exercise Check point 12.1|15 Videos
  • CURRENT ELECTRICITY

    DC PANDEY|Exercise All Questions|434 Videos
  • ELECTROSTATICS

    DC PANDEY|Exercise Integer|17 Videos

Similar Questions

Explore conceptually related problems

Two wires are made of the same material and have the same volume. However, wire 1 has cross-sectional area A and wire 2 has cross-sectional area 3A . If the length of wire 1 increases by /_\x on applying force 1 newton, how much force is needed to stretch wire 2 by the same amount?

Two wires are made of the same material and have the same volume. However wire 1 has cross-section area A and wire 2 has cross-section area 3A. If length of wire 1 increased by

Two wires A and B of the same material and having same length, have their cross-sectional areas in the ratio 1:4 . what should be the ratio of heat produced in these wires when same voltage is applied across each ?

Two wires A and B of the same material and having same length, have their cross-sectional areas in the ratio 1 : 6 . what should be the ratio of heat produced in these wires when same voltage is applied across each ?

Two wires of the same materical having equal area of cross-section have L and 2L. Their respective resistances are in the ratio

Two wires of same material and length have the radii of their cross sections as r and 2r, respectively. The ratio of their resistances

Two wires of same material have lengths, L and 2L and cross-sectional area 4A and A, respectively. The ratio of their resistances would be