Home
Class 12
MATHS
(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1...

`(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}],` then show that `A^(2)=B^(2)=C^(2)=I_(2).` `(ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}],` then show that A(B+C)=AB+AC. `(iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}],`then show that AB is a zero matrix.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given questions step by step. ### (i) Show that \( A^2 = B^2 = C^2 = I_2 \) Given matrices: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 0 + 0 \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \] 2. **Calculate \( B^2 \)**: \[ B^2 = B \cdot B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 \cdot 0 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 0 + 0 \cdot 1 & 1 \cdot 1 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \] 3. **Calculate \( C^2 \)**: \[ C^2 = C \cdot C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \] Thus, we have shown that \( A^2 = B^2 = C^2 = I_2 \).

Let's solve the given questions step by step. ### (i) Show that \( A^2 = B^2 = C^2 = I_2 \) Given matrices: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3c|9 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0),(1,1)], B=[(2,0),(1,1)] and C=[(-1,2),(3,1)], show that

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}], then show that (AB)'=B'A'

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show that (A+B)^(2)=A^(2)+B^(2) .

If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,0,2):}] then veri fy that A(B+C)=(AB+AC) .

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

if A=[{:(0),(1),(2):}]and B=[3" "2" "1], then show that : (AB)'=B'A'