Home
Class 12
MATHS
if A[{:(1,3,2),(2,0,3),(1,-1,1):}],then ...

`if A[{:(1,3,2),(2,0,3),(1,-1,1):}],`then find `A^(3)-2A^(2)+A-I_(3).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^3 - 2A^2 + A - I_3 \) for the given matrix \( A \). Given: \[ A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row, first column: \[ 1 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 = 1 + 6 + 2 = 9 \] - First row, second column: \[ 1 \cdot 3 + 3 \cdot 0 + 2 \cdot -1 = 3 + 0 - 2 = 1 \] - First row, third column: \[ 1 \cdot 2 + 3 \cdot 3 + 2 \cdot 1 = 2 + 9 + 2 = 13 \] - Second row, first column: \[ 2 \cdot 1 + 0 \cdot 2 + 3 \cdot 1 = 2 + 0 + 3 = 5 \] - Second row, second column: \[ 2 \cdot 3 + 0 \cdot 0 + 3 \cdot -1 = 6 + 0 - 3 = 3 \] - Second row, third column: \[ 2 \cdot 2 + 0 \cdot 3 + 3 \cdot 1 = 4 + 0 + 3 = 7 \] - Third row, first column: \[ 1 \cdot 1 + -1 \cdot 2 + 1 \cdot 1 = 1 - 2 + 1 = 0 \] - Third row, second column: \[ 1 \cdot 3 + -1 \cdot 0 + 1 \cdot -1 = 3 + 0 - 1 = 2 \] - Third row, third column: \[ 1 \cdot 2 + -1 \cdot 3 + 1 \cdot 1 = 2 - 3 + 1 = 0 \] Thus, \[ A^2 = \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \] Calculating each element of \( A^3 \): - First row, first column: \[ 9 \cdot 1 + 1 \cdot 2 + 13 \cdot 1 = 9 + 2 + 13 = 24 \] - First row, second column: \[ 9 \cdot 3 + 1 \cdot 0 + 13 \cdot -1 = 27 + 0 - 13 = 14 \] - First row, third column: \[ 9 \cdot 2 + 1 \cdot 3 + 13 \cdot 1 = 18 + 3 + 13 = 34 \] - Second row, first column: \[ 5 \cdot 1 + 3 \cdot 2 + 7 \cdot 1 = 5 + 6 + 7 = 18 \] - Second row, second column: \[ 5 \cdot 3 + 3 \cdot 0 + 7 \cdot -1 = 15 + 0 - 7 = 8 \] - Second row, third column: \[ 5 \cdot 2 + 3 \cdot 3 + 7 \cdot 1 = 10 + 9 + 7 = 26 \] - Third row, first column: \[ 0 \cdot 1 + 2 \cdot 2 + 0 \cdot 1 = 0 + 4 + 0 = 4 \] - Third row, second column: \[ 0 \cdot 3 + 2 \cdot 0 + 0 \cdot -1 = 0 + 0 + 0 = 0 \] - Third row, third column: \[ 0 \cdot 2 + 2 \cdot 3 + 0 \cdot 1 = 0 + 6 + 0 = 6 \] Thus, \[ A^3 = \begin{pmatrix} 24 & 14 & 34 \\ 18 & 8 & 26 \\ 4 & 0 & 6 \end{pmatrix} \] ### Step 3: Calculate \( -2A^2 \) Now we calculate \( -2A^2 \): \[ -2A^2 = -2 \cdot \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -18 & -2 & -26 \\ -10 & -6 & -14 \\ 0 & -4 & 0 \end{pmatrix} \] ### Step 4: Calculate \( A - I_3 \) The identity matrix \( I_3 \) is: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, calculate \( A - I_3 \): \[ A - I_3 = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 2 \\ 2 & -1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] ### Step 5: Combine all parts to find \( A^3 - 2A^2 + A - I_3 \) Now we combine all the results: \[ A^3 - 2A^2 + A - I_3 = \begin{pmatrix} 24 & 14 & 34 \\ 18 & 8 & 26 \\ 4 & 0 & 6 \end{pmatrix} + \begin{pmatrix} -18 & -2 & -26 \\ -10 & -6 & -14 \\ 0 & -4 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 2 \\ 2 & -1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] Calculating each element: - First row: \[ (24 - 18 + 0) = 6, \quad (14 - 2 + 3) = 15, \quad (34 - 26 + 2) = 10 \] - Second row: \[ (18 - 10 + 2) = 10, \quad (8 - 6 - 1) = 1, \quad (26 - 14 + 3) = 15 \] - Third row: \[ (4 + 0 + 1) = 5, \quad (0 - 4 - 1) = -5, \quad (6 + 0 + 0) = 6 \] Thus, the final result is: \[ A^3 - 2A^2 + A - I_3 = \begin{pmatrix} 6 & 15 & 10 \\ 10 & 1 & 15 \\ 5 & -5 & 6 \end{pmatrix} \]

To solve the problem, we need to find \( A^3 - 2A^2 + A - I_3 \) for the given matrix \( A \). Given: \[ A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3c|9 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

A=[[1,2-3,0]] then find A^(2)+3A+5I

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0