Home
Class 12
MATHS
If A=[(a,b),(b,a)] and A^2=[(alpha, beta...

If `A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)]` then

A

`alpha=a^(2)-b^(2),beta=2ab`

B

`alpha=2ab,beta=a^(2)+b^(2)`

C

`alpha=a^(2)+b^(2),beta=2ab`

D

`alpha=2ab,beta=a^(2)-b^(2) `

Text Solution

Verified by Experts

The correct Answer is:
C

N/a
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3e|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if alpha,beta are the roots of ax^(2)+bx+c=0, then find the equation whose roots (1)(1)/(alpha^(2)),(1)/(beta^(2)) and (2) (1)/(a alpha+b),(1)/(a beta+b) and (3)alpha+(1)/(beta),beta+(1)/(alpha)

If alpha,beta are roots of the equation 2x^(2)+6x+b=0(b<0), then (alpha)/(beta)+(beta)/(alpha) is less than

If alpha,beta be the roots of ax^(2)+bx+c=0,c!=0 , alpha+beta=(-b)/(a) and alpha beta=(c)/(a) , then alpha^(3)+beta^(3)=

If (cos alpha)/(cos beta)=a and (sin alpha)/(sin beta)=b then the value of sin^(2)beta in terms of a and b

If the roots of the equation ax^(2)-bx+c=0 are alpha,beta, then the roots of the equation b^(2)cx^(2)-ab^(2)x+a^(3)=0 are (1)/(alpha^(3)+alpha beta),(1)/(beta^(3)+alpha beta) b.(1)/(alpha^(2)+alpha beta),(1)/(beta^(2)+alpha beta) c.(1)/(alpha^(4)+alpha beta),(1)/(beta^(4)+alpha beta) d.none of these

If tan alpha=(1-cos beta)/(sin beta), then a )tan3 alpha=tan2 beta(b)tan2 alpha=tan beta(c)tan2 beta=tan alpha(d) none of these