Home
Class 12
MATHS
Construst a 2xx2 matrix ,A=[a(ij)], who...

Construst a `2xx2` matrix ,A=[`a_(ij)`], whose elements are given by :
`(i) a_(ij)=((i+j)^(2))/(2)(ii)a_(ij)=(i)/(j)`
`(iii) a_(ij)=((i+2j)^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the \(2 \times 2\) matrices as per the given conditions, we will follow the definitions provided for each element \(a_{ij}\). ### Step-by-step Solution: **1. Matrix for \(a_{ij} = \frac{(i + j)^2}{2}\)** - For \(i = 1, j = 1\): \[ a_{11} = \frac{(1 + 1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2 \] - For \(i = 1, j = 2\): \[ a_{12} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5 \] - For \(i = 2, j = 1\): \[ a_{21} = \frac{(2 + 1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5 \] - For \(i = 2, j = 2\): \[ a_{22} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] Thus, the first matrix \(A_1\) is: \[ A_1 = \begin{bmatrix} 2 & 4.5 \\ 4.5 & 8 \end{bmatrix} \] **2. Matrix for \(a_{ij} = \frac{i}{j}\)** - For \(i = 1, j = 1\): \[ a_{11} = \frac{1}{1} = 1 \] - For \(i = 1, j = 2\): \[ a_{12} = \frac{1}{2} = 0.5 \] - For \(i = 2, j = 1\): \[ a_{21} = \frac{2}{1} = 2 \] - For \(i = 2, j = 2\): \[ a_{22} = \frac{2}{2} = 1 \] Thus, the second matrix \(A_2\) is: \[ A_2 = \begin{bmatrix} 1 & 0.5 \\ 2 & 1 \end{bmatrix} \] **3. Matrix for \(a_{ij} = \frac{(i + 2j)^2}{2}\)** - For \(i = 1, j = 1\): \[ a_{11} = \frac{(1 + 2 \cdot 1)^2}{2} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5 \] - For \(i = 1, j = 2\): \[ a_{12} = \frac{(1 + 2 \cdot 2)^2}{2} = \frac{(1 + 4)^2}{2} = \frac{5^2}{2} = \frac{25}{2} = 12.5 \] - For \(i = 2, j = 1\): \[ a_{21} = \frac{(2 + 2 \cdot 1)^2}{2} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] - For \(i = 2, j = 2\): \[ a_{22} = \frac{(2 + 2 \cdot 2)^2}{2} = \frac{(2 + 4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18 \] Thus, the third matrix \(A_3\) is: \[ A_3 = \begin{bmatrix} 4.5 & 12.5 \\ 8 & 18 \end{bmatrix} \] ### Summary of Matrices: 1. \(A_1 = \begin{bmatrix} 2 & 4.5 \\ 4.5 & 8 \end{bmatrix}\) 2. \(A_2 = \begin{bmatrix} 1 & 0.5 \\ 2 & 1 \end{bmatrix}\) 3. \(A_3 = \begin{bmatrix} 4.5 & 12.5 \\ 8 & 18 \end{bmatrix}\)

To construct the \(2 \times 2\) matrices as per the given conditions, we will follow the definitions provided for each element \(a_{ij}\). ### Step-by-step Solution: **1. Matrix for \(a_{ij} = \frac{(i + j)^2}{2}\)** - For \(i = 1, j = 1\): \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3f|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: ( i) a_(ij)=((2i+j)^(2))/(2) (ii) a_(ij)=(|2i-3j|)/(2)( (iii) a_(ij)=(|-3i+j|)/(2)

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=e^(2ix)sin xj

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i)((i+j)^(2))/(2) (ii) a_(ij)=((i-j)^(2))/(2)( iii) a_(ij)=((i-2j)^(2))/(2)

Construct a 4xx3 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=2i+(i)/(j)

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by : a_(ij)=(2i-j)/(3)

Construct a 2*2 matrix,A=[a_(ij)], whose elements are given by: a_(ij)=((i+j)^(2))/(2)

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: (i) a_(ij)=i+j( ii) a_(ij)=((i+j)^(2))/(2)

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by : a_(ij)=((i+j)^(2))/(2)

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by : a_(ij)=1/3|(2i-3j)|

Construct a 2xx3 matrix A=[a_(ij)] whose elements are given by a_(ij)=(i-j)/(i+j)