Home
Class 12
MATHS
[{:(2,1),(1,1):}] find the inverse of ma...

`[{:(2,1),(1,1):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrix \( A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix: \[ \text{det}(A) = (2)(1) - (1)(1) = 2 - 1 = 1 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is found by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For our matrix: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{1} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \] ---

To find the inverse of the given matrix \( A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

Find the inverse of matrix [{:(2,5),(-3,1):}]

Find the inverse of the matrix [{:(-3,2),(5,-3):}] Hence, find the matrix P satisfying the matrix equation : P[{:(-3,2),(5,-3):}]=[{:(1,2),(2,-1):}]

(a) Find the inverse of the matrix A=[[1,1,1],[1,2,-3],[2,-1,3]]

Using elementary tansformations, find the inverse of the matrix A=[(8,4,3),(2,1,1),(1,2,2)]

By using elementary row operations, find the inverse of the matrix A=[{:(3,-1,-2),(2,0,-1),(3,-5," "0):}].

Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary operations.