Home
Class 12
MATHS
[{:(1,3),(2,7):}] find the inverse of ma...

`[{:(1,3),(2,7):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}\), we will follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} \). ### Step 2: Calculate the Determinant The determinant of a \(2 \times 2\) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 3 \) - \( c = 2 \) - \( d = 7 \) Calculating the determinant: \[ \text{det}(A) = (1)(7) - (2)(3) = 7 - 6 = 1 \] ### Step 3: Check if the Determinant is Non-Zero Since the determinant is \( 1 \) (which is not zero), the inverse exists. ### Step 4: Calculate the Adjoint To find the adjoint of matrix \( A \), we need to calculate the cofactors. 1. **Calculate Minors:** - \( M_{11} = 7 \) (remove first row and first column) - \( M_{12} = 2 \) (remove first row and second column) - \( M_{21} = 3 \) (remove second row and first column) - \( M_{22} = 1 \) (remove second row and second column) 2. **Calculate Cofactors:** - \( C_{11} = (-1)^{1+1} \cdot M_{11} = 1 \cdot 7 = 7 \) - \( C_{12} = (-1)^{1+2} \cdot M_{12} = -1 \cdot 2 = -2 \) - \( C_{21} = (-1)^{2+1} \cdot M_{21} = -1 \cdot 3 = -3 \) - \( C_{22} = (-1)^{2+2} \cdot M_{22} = 1 \cdot 1 = 1 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix} \] 3. **Transpose the Cofactor Matrix to get the Adjoint:** \[ \text{Adj}(A) = \text{Cofactor}(A)^T = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix} \] ### Step 5: Calculate the Inverse The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{1} \cdot \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} \) is: \[ A^{-1} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix} \]

To find the inverse of the matrix \(\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}\), we will follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} \). ### Step 2: Calculate the Determinant The determinant of a \(2 \times 2\) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(4,5),(3,4):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

Find the inverse of the matrix [2-134]

Find the inverse of matrix [{:(6,7),(8,9):}]

Find the inverse of matrix [{:(2,5),(-3,1):}]