Home
Class 12
MATHS
[{:(2,5),(1,3):}]...

`[{:(2,5),(1,3):}]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`Let A=[{:(2,5),(1,3):}]`
`now , A=IA`
`implies [{:(2,5),(1,3):}]=[{:(1,0),(0,1):}]A`
`implies [{:(1,2),(1,3):}]=[{:(1,-1),(0,1):}]AR_(1)to R_(1)-R_(2)`
`[{:(1,(1)/(2)),(0,1):}]=[{:((1)/(2),0),(-7,2):}]AR_(2)to 2R_(2)``implies[{:(1,0),(0,1):}]=[{:(4,-1),(-7,2):}]AR_(1) to R_(1)-(1)/(2)R_(2)`
`therefore A^(-1)=[{:(4,-1),(-7,2):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A =[{:(1,-2),(5,3):}], B=[{:(1,-3),(4,-7):}] then A-3B = ………….

Using section formula show that the points are collinear: (-2,3,5),(1,2,3),(7,0,-1)

The adjoint of the matrix [(2,5),(3,1)] is (A) [(2,5),(3,1)] (B) [(1,-5),(-3,2)] (C) [(1,-3),(-5,2)] (D) [(-1,3),(5,-2)]

find the invese of the matraix [(1,2,5),(2,3,1),(-1,1,1)], using elementary row operaations.

Show that the points (-2,3,5),(1,2,3) and (7,0,-1) are collinear.

If A=[(2,-1),(5,3)] then A^(-1) =

If [1" "x" "1][{:(1,2,3),(4,5,6),(3,2,5):}][{:(" "1),(-2),(" "3):}]=O, find x.

Show that the points (-2,3,5) (1,2,3) and are collinear.

If {:A=[(5,2),(3,1)]:}," then "A^(-1)=