Home
Class 12
MATHS
If A=[(2,-3,3),(2,2,3),(3,-2,2)] then ...

If `A=[(2,-3,3),(2,2,3),(3,-2,2)] ` then
`C_(2)rarrC_(2)+2C_(1)` and then `R_(1)rarrR_(1)+R_(3)` gives

Text Solution

Verified by Experts

The correct Answer is:
N/a

`[{:( 2,-3,3),(2,2,3),(3,-2,2):}]`
`Now , A=IA `
` implies [{:( 2,-3,3),( 2,2,3),( 3,-2,2):}]=[{:( 1,0,0),( 0,1,0),( 0,0,1):}]A`
`implies [{:( 1,1,4),( 2,2,3),( 3,-2,2):}]=[{:( 1,1,-1),( 0,1,0),(0,0,1):}]A R_(1) to R_(1) +R_(2) -R_(3)`
`={:( 1,1,4),( 0,0,-5),(0,-5,-10):}]=[{:(1,1,-1),(-2,-1,2),(-3,-3,4):}]A`
` R_(2) to R_(2) -2R_(1)`
` R_(3) to R_(3) - 3R_(1)`
`implies [{:( 1,1,4),( 0,-5,-10),( 0,0,-5):}]-[{:( 1,1,-1),( -3,-3,4),( -2,-1,2):}]AR_(2) harr R_(3)`
`implies [{:(1,1,4),( 0,1,2),(0,0,1):}]=[{:(1,1,-1),( (3)/(5),(3)/(5),-(4)/(5)),( (2)/(5),(1)/(5) ,-(2)/(5)):}]A R_(2) to -(1)/(5) R_(2),`
`R_(3) to -(1)/(5) R_(3)`
`implies [{:( 1,0,2),(0,1,2),(0,0,1):}]=[{:((2)/(5),(2)/(5),-(1)/(5)),((3)/(5),(3)/(5),-(4)/(5)),((2)/(5),(1)/(5),-(2)/(5)):}]AR_(1)to R_(1)- R_(2)`
`implies [{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(-(2)/(5),0,(3)/(5)),(-(1)/(5),(1)/(5),0),((2)/(5),(1)/(5) ,-(2)/(5)):}]A`
`R_(1) to R_(1) - 2R_(3),R_(2) to R_(2) -2R_(3)`
`therefore A^(-1)=[{:(-(2)/(5),0,(3)/(5)),(-(1)/(5),(1)/(5),0),((2)/(5),(1)/(5),-(2)/(5)):}]=-(1)/(5)[{:(2,0,-3),(1,-1,0),(-2,-1,2):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C_(2)+2C_(1) and "then" R_(1)+R_(3) gives

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

If A=[[1, 2, -1], [3, -2, 5]] , then first R_1 harr R_2 and then C_1 to C_1+2C_3 on A gives

show that r_(2)r_(3) +r_(3) r_(1)+ r _(1) r_(2)=s^(2)

Show that (r_(1)+ r _(2))(r _(2)+ r _(3)) (r_(3)+r_(1))=4Rs^(2)

Three circles with centres C_(1),C_(2) and C_(3) and radii r_(1),r_(2) and r_(3) where *r_(-)1

Let A={1,2,3}, and let R_(1)={(1,1),(1,3),(1,1),(2,1),(2,1),(2,3)}R_(-)2={(2,2),3,1),(1,3)},R_(-)3={(1,3),(3,3)} Find whether or not each of the relations R_(1),R_(2),R_(3) on A is reflexive (ii) symmetric (iii) transitive.