Home
Class 12
MATHS
If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A...

If `A=((2,-3,5),(3,2,-4),(1,1,-2))` find `A^(-1)`. Use it to solve the system of equations `2x-3y+5z=11` , `3x+2y-4z=-5` and `x+y-2z=-3`

Text Solution

Verified by Experts

` A=[{:(2,-3,5),(3,2,-4),(1,1,-2):}]`
`rArr" " |A|=[{:(2,-3,5),(3,2,-4),(1,1,-2):}]`
=2(-4+4)-(-23)(-6+4)+5(3-2)
`=-6+5=-1ne0`
`therefore` A is invertible
`"Now," A_(11)=0, A_(12)=2, A_(13)=1`
`A_(21)=-1, A_(22)=-9, A_(23)=-5`
`A_(31)=2, A_(32)=23, A_(33)=13`
`therefore" adjA"=[{:(0,2,1),(-1,-9,-5),(2,23,13):}]=[{:(0,-1,2),(2,-9,23),(1,-5,13):}]`
`"and A"^(-1)=1/|A|"adj A"=1/-1"=[{:(0,-1,2),(2,-9,23),(1,-5,13):}]=[{:(0,1,-2),(2,-9,23),(-1,5,-13):}]`
Given system of equations,
2x-3y+5y=11
3x+2y-4z=-5
x+y-2z=-3
`"=[{:(2,-3,5),(3,2,-4),(1,1,12):}][{:(x),(y),(z):}]=[{:(11),(-5),(-3):}]`
`rArr" "AX=B=rArrX=A^(-1)B`
`[{:(x),(y),(z):}]=[{:(0,1,-2),(-2,9,-23),(-1,5,-13):}][{:(11),(-5),(-3):}]`
`=[{:(0-5+6),(-22-45+69),(-11-25+39):}][{:(1),(2),(3):}]`
`rArr " "x=1, y=2, z=3`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,-3,5],[3,2,-4],[1,1,-2]], find A^(-1). Using A^(-1) solve the following system of equations: 2x-3y+5z=16;3x+2y-4z=-4;x+y-2z=-3

Using matrices,solve the following system of equations: 2x-3y+5z=11,3x+2y-4z=-5,x+y-2z=-3

If A=[[2,-3,53,2,-41,1,-2]], find A^(-1) Using A^(-1) solve the following system of equations : 2x-3y+5z=16:3x+2y=-4;x+y-2z=-

2x-3y+5z=16, 3x+ 2y-4z= -4, x + y - 2z =- 3.

If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1) . Hence, solve the system of equations : 3x+3y+2z=1 , x+2y=4 , 2x-3y-z=5

Solve the following system of equations: 2x-3y+5z=11, 5x+2y-7z=-12, -4x+3y+z=5

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is