Home
Class 12
MATHS
For two events A and B P(A)=6/13, P(B)=5...

For two events A and B `P(A)=6/13, P(B)=5/13` and `P(AuuB)=7/13`. Find the values of following:
(i) `P(AnnB)` (ii) `P(A//B)`
(iii) `P(B//A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Given: - \( P(A) = \frac{6}{13} \) - \( P(B) = \frac{5}{13} \) - \( P(A \cup B) = \frac{7}{13} \) ### Step 1: Find \( P(A \cap B) \) Using the formula for the probability of the union of two events: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substituting the known values: \[ \frac{7}{13} = \frac{6}{13} + \frac{5}{13} - P(A \cap B) \] Now, simplify the equation: \[ \frac{7}{13} = \frac{11}{13} - P(A \cap B) \] Rearranging gives: \[ P(A \cap B) = \frac{11}{13} - \frac{7}{13} = \frac{4}{13} \] ### Step 2: Find \( P(A | B) \) The conditional probability \( P(A | B) \) is given by: \[ P(A | B) = \frac{P(A \cap B)}{P(B)} \] Substituting the values we found: \[ P(A | B) = \frac{\frac{4}{13}}{\frac{5}{13}} = \frac{4}{5} \] ### Step 3: Find \( P(B | A) \) The conditional probability \( P(B | A) \) is given by: \[ P(B | A) = \frac{P(A \cap B)}{P(A)} \] Substituting the values: \[ P(B | A) = \frac{\frac{4}{13}}{\frac{6}{13}} = \frac{4}{6} = \frac{2}{3} \] ### Final Results: (i) \( P(A \cap B) = \frac{4}{13} \) (ii) \( P(A | B) = \frac{4}{5} \) (iii) \( P(B | A) = \frac{2}{3} \) ---

To solve the problem, we will follow these steps: ### Given: - \( P(A) = \frac{6}{13} \) - \( P(B) = \frac{5}{13} \) - \( P(A \cup B) = \frac{7}{13} \) ### Step 1: Find \( P(A \cap B) \) ...
Promotional Banner

Topper's Solved these Questions

  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Exercise 13 B|17 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Exercise 13 C|15 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For two events A and B P(A)=7/13, P(B)=9/13 and (AnnB)=4/13 . Find the value of P(A//B) .

For two events A and B P(A)=0.7, (B)=0.5 and P(AnnB)=0.3 . Find the values of following: (i) P(AuuB) (ii) P(A//B) (iii) P(barA//barB) (iv) P(barB//barA)

If A and B are the two events such that P(A)=3/5, P(B)=7/10 and P(A uu B)=9/10 , then find (i) P(A nn B) (ii) P(A/B) (iii) P(B/A)

If A and B are two independent events and P(A)=0.2, P(B)=0.3 , then find the values of the following: (i) P (A and B) (ii) P (A and not B) (iii) P (A or B) (iv) P (none of A and B)

If P(A)=(6)/(11),P(B)=(5)/(11) and P(A uu B)=(7)/(11) , find : (i) P(A nn B) (ii) P(A//B) (iii) P(B//A) .

Let A and B be the events such that P(A)=5/11, P(B)=6/11 and P(A uu B)= 7/11 . Find (i) P(A nn B) (ii) P(A//B) (iii) P(B//A) (iv) P(bar(A)//bar(B)) .

Let two events A and B be such that P(A)=L , P(B)=M and P(AuuB)=1 . Which one of the following is correct?

If A and B are independent events such that P(A)=0.3 and P(B)=0.5 , then find the values of: (i) P(AnnB) (ii) P(AuuB) (iii) P(A//B) (iv) P(B//A)

If P(A)=7/13,P(B)=9/13 and P(AcapB)=4/13 , then P(A'/B) is equal to

Given P(A)=1/3 , P(B)=1/5 and P(AnnB)=1/15 find P(AuuB) .