Home
Class 11
MATHS
Convert the complex number z=(i-1)/(cos(...

Convert the complex number `z=(i-1)/(cos(pi/3)+isin(pi/3))`in the polar form.

Text Solution

AI Generated Solution

To convert the complex number \( z = \frac{i - 1}{\cos(\frac{\pi}{3}) + i \sin(\frac{\pi}{3})} \) into polar form, we can follow these steps: ### Step 1: Simplify the Denominator First, we need to evaluate the denominator: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.1|14 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

-2(cos(pi/3)+isin(pi/3))=?

Convert the complex number 3(cos(5(pi)/(3))-i sin((pi)/(6))) into polar form.

Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3)) in polar form.

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

cos(pi/4)+isin(-pi/4)=?

(cos(pi/6)+isin(pi/6))^7=?