Home
Class 9
MATHS
If ((1)/(16)p^(2)-q) =(1/4p-11) (1/4 p+1...

If `((1)/(16)p^(2)-q) =(1/4p-11) (1/4 p+11)` then q is

A

11

B

1

C

121

D

`11/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{16}p^2 - q = \left(\frac{1}{4}p - 11\right)\left(\frac{1}{4}p + 11\right)\), we will follow these steps: ### Step 1: Identify the equation We start with the equation: \[ \frac{1}{16}p^2 - q = \left(\frac{1}{4}p - 11\right)\left(\frac{1}{4}p + 11\right) \] ### Step 2: Apply the difference of squares formula Recognize that the right-hand side can be simplified using the difference of squares formula, which states that \( (a - b)(a + b) = a^2 - b^2 \). Here, \( a = \frac{1}{4}p \) and \( b = 11 \). So, we can rewrite the equation as: \[ \frac{1}{16}p^2 - q = \left(\frac{1}{4}p\right)^2 - 11^2 \] ### Step 3: Calculate the squares Now, calculate \( \left(\frac{1}{4}p\right)^2 \) and \( 11^2 \): \[ \left(\frac{1}{4}p\right)^2 = \frac{1}{16}p^2 \] \[ 11^2 = 121 \] ### Step 4: Substitute back into the equation Substituting these values back into the equation gives: \[ \frac{1}{16}p^2 - q = \frac{1}{16}p^2 - 121 \] ### Step 5: Isolate \( q \) To isolate \( q \), we can rearrange the equation: \[ -q = -121 \] Thus, multiplying both sides by -1, we find: \[ q = 121 \] ### Final Answer The value of \( q \) is: \[ \boxed{121} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise True & False|22 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part C|29 Videos
  • NUMBER SYSTEMS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part - D|18 Videos
  • PRACTICE QUESTION PAPER-2

    CBSE COMPLEMENTARY MATERIAL|Exercise PART D|7 Videos

Similar Questions

Explore conceptually related problems

If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n with p(1)=q(1), p(2)-q(2)=1 , and p(3)-q(3)=4 , then p(4)-q(4) is equal to

If absolute maximum value of f(x)=(1)/(|x-4|+1)+(1)/(|x+8|+1)is(p)/(q), (p,q are coprime) the (p-q) is……… .

Simplify: [(p^(-1)+q^(-1))(p^(-1)-q^(-1))-:((1)/(p^(-1))-(1)/(q^(-1)))((1)/(p^(-1))+(1)/(q^(-1)))](pq)^(2)

Simplify [(p^(-1)+q^(-1))(p^(-1)-q^(-1))div ((1)/(p^(-1))-(1)/(q^(-1)))((1)/(p^(-1))+(1)/(q^(-1)))](pq)^(2)

Prove tan ^ (- 1) ((1) / (p + q)) + tan ^ (- 1) ((a) / (p ^ (2) + q + 1)) = cos ^ (- 1) p

tan ^ (- 1) ((1) / (p + q)) + tan ^ (- 1) ((a) / (p ^ (2) + q + 1)) = cos ^ (- 1) p

sum_ (p = 1) ^ (pi) (3p + 2) [sum_ (q = 1) ^ (10) (if (2q pi)) / (11) -i (cos (pi 2q)) / (11) ] ^ (o)

If p^(2)+q^(2)=1,p,q in R, then (1+p+iq)/(1+p-iq) is equal to