Home
Class 9
MATHS
If p+q+r=9 then (3-p)^(3)+(3-q)6(3)+(3-r...

If p+q+r=9 then `(3-p)^(3)+(3-q)6(3)+(3-r)^(3)` is :

A

3(3-p)(3-q)(3-r)

B

0

C

1

D

`-3(3-p)(3-q)(3-r)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((3-p)^3 + (3-q)^3 + (3-r)^3\) given that \(p + q + r = 9\). ### Step-by-Step Solution: 1. **Identify the Expression**: We have the expression \((3-p)^3 + (3-q)^3 + (3-r)^3\). 2. **Let \(x = 3 - p\), \(y = 3 - q\), and \(z = 3 - r\)**: This gives us: \[ x + y + z = (3 - p) + (3 - q) + (3 - r) = 9 - (p + q + r) = 9 - 9 = 0 \] 3. **Use the Identity for Sums of Cubes**: We know that if \(x + y + z = 0\), then: \[ x^3 + y^3 + z^3 = 3xyz \] Therefore, we can rewrite our expression as: \[ (3-p)^3 + (3-q)^3 + (3-r)^3 = 3(3-p)(3-q)(3-r) \] 4. **Calculate \(xyz\)**: We need to find \(xyz\): \[ xyz = (3-p)(3-q)(3-r) \] Substituting \(x = 3 - p\), \(y = 3 - q\), and \(z = 3 - r\): \[ xyz = (3-p)(3-q)(3-r) \] 5. **Expand the Product**: To expand \((3-p)(3-q)(3-r)\): \[ = 27 - 9(p + q + r) + 3(pq + qr + rp) - pqr \] Since \(p + q + r = 9\), we have: \[ = 27 - 9 \times 9 + 3(pq + qr + rp) - pqr \] \[ = 27 - 81 + 3(pq + qr + rp) - pqr \] \[ = -54 + 3(pq + qr + rp) - pqr \] 6. **Final Expression**: Therefore, the original expression becomes: \[ (3-p)^3 + (3-q)^3 + (3-r)^3 = 3xyz = 3(-54 + 3(pq + qr + rp) - pqr) \] ### Conclusion: The value of \((3-p)^3 + (3-q)^3 + (3-r)^3\) is \(3(-54 + 3(pq + qr + rp) - pqr)\).
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise True & False|22 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part C|29 Videos
  • NUMBER SYSTEMS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part - D|18 Videos
  • PRACTICE QUESTION PAPER-2

    CBSE COMPLEMENTARY MATERIAL|Exercise PART D|7 Videos

Similar Questions

Explore conceptually related problems

Factorise : (p-q)^(3)+(q-r)^(3)+(r-p)^(3)

If p + q = 6 and pq = 8 , then p^(3) + q^(3) is equal to

Let p,q,r varepsilon R^(+) and 27pqr>=(p+q+r)^(3) and 3p+4q+5r=12 then p^(3)+q^(4)+r^(5) is equal to

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

If p:q=3:4 and q:r=8:9 then p:r is

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)