Home
Class 9
MATHS
Factories 8x^(3)+sqrt27 y^(3)....

Factories `8x^(3)+sqrt27 y^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( 8x^3 + \sqrt{27}y^3 \), we can follow these steps: ### Step 1: Rewrite the expression First, we can simplify \( \sqrt{27} \): \[ \sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3} \] Thus, the expression becomes: \[ 8x^3 + 3\sqrt{3}y^3 \] ### Step 2: Identify \( a \) and \( b \) Next, we can express \( 8x^3 \) and \( 3\sqrt{3}y^3 \) in the form of \( a^3 + b^3 \): \[ a = 2x \quad \text{(since } (2x)^3 = 8x^3\text{)} \] \[ b = \sqrt{3}y \quad \text{(since } (\sqrt{3}y)^3 = 3\sqrt{3}y^3\text{)} \] ### Step 3: Use the identity for \( a^3 + b^3 \) We can use the algebraic identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Substituting \( a \) and \( b \) into the identity: \[ 8x^3 + 3\sqrt{3}y^3 = (2x + \sqrt{3}y)((2x)^2 - (2x)(\sqrt{3}y) + (\sqrt{3}y)^2) \] ### Step 4: Simplify the expression Now we calculate each part: 1. \( (2x)^2 = 4x^2 \) 2. \( (2x)(\sqrt{3}y) = 2\sqrt{3}xy \) 3. \( (\sqrt{3}y)^2 = 3y^2 \) Putting it all together: \[ = (2x + \sqrt{3}y)(4x^2 - 2\sqrt{3}xy + 3y^2) \] ### Final Answer Thus, the factorization of \( 8x^3 + \sqrt{27}y^3 \) is: \[ (2x + \sqrt{3}y)(4x^2 - 2\sqrt{3}xy + 3y^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part C|29 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice Test|8 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice Test|8 Videos
  • NUMBER SYSTEMS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part - D|18 Videos
  • PRACTICE QUESTION PAPER-2

    CBSE COMPLEMENTARY MATERIAL|Exercise PART D|7 Videos

Similar Questions

Explore conceptually related problems

Factorize: 8x^(3)y^(3)+27a^(3)

Factorize: 125+8x^(3)-27y^(3)+90xy

Factorise 8x^(3)+27y^(3)+36x^(2)y+54xy^(2)

Factorize: 8x^(3)+27y^(3)+z^(3)-18xyz

Factorize: 8x^(3)+27y^(3)-216z^(3)+108xyz

Factorize: (i) 8x^(3)+27y^(3)+z^(3)-18xyz,( ii) a^(3)-8b^(3)-64c^(3)-24abc

Factorize : ( i )8x^(3)+27y^(3)+z^(3)-18xyz(ii)a^(3)-8b^(3)-64c^(3)-24abc

Factorize: 8(x+y0^(3)-27(x-y)^(3)