Home
Class 12
MATHS
f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),...

`f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):}` at `x = a`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = a \), we need to check the following conditions: 1. The left-hand limit as \( x \) approaches \( a \) exists. 2. The right-hand limit as \( x \) approaches \( a \) exists. 3. The value of the function at \( x = a \) is equal to both limits. The function is defined as follows: \[ f(x) = \begin{cases} |x| \sin\left(\frac{1}{x-a}\right) & \text{if } x \neq a \\ 0 & \text{if } x = a \end{cases} \] ### Step 1: Calculate the Left-Hand Limit We need to find the left-hand limit as \( x \) approaches \( a \): \[ \lim_{x \to a^-} f(x) = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} |a - h| \sin\left(\frac{1}{a - h - a}\right) = \lim_{h \to 0} |a - h| \sin\left(\frac{1}{-h}\right) \] Since \( a - h \) approaches \( a \) as \( h \) approaches \( 0 \), we can simplify: \[ = \lim_{h \to 0} (a - h) \sin\left(-\frac{1}{h}\right) = \lim_{h \to 0} (a - h)(-\sin\left(\frac{1}{h}\right)) \] The sine function oscillates between -1 and 1, so we can write: \[ = \lim_{h \to 0} (a - h) \cdot (-\sin\left(\frac{1}{h}\right)) \] As \( h \to 0 \), \( a - h \to a \) and \( -\sin\left(\frac{1}{h}\right) \) oscillates between -1 and 1. Thus, the limit approaches: \[ = 0 \] ### Step 2: Calculate the Right-Hand Limit Next, we find the right-hand limit as \( x \) approaches \( a \): \[ \lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a + h) = \lim_{h \to 0} |a + h| \sin\left(\frac{1}{a + h - a}\right) = \lim_{h \to 0} |a + h| \sin\left(\frac{1}{h}\right) \] As \( h \to 0 \), \( a + h \) approaches \( a \): \[ = \lim_{h \to 0} (a + h) \sin\left(\frac{1}{h}\right) \] Again, the sine function oscillates between -1 and 1: \[ = \lim_{h \to 0} (a + h) \cdot \sin\left(\frac{1}{h}\right) \] As \( h \to 0 \), \( a + h \to a \) and \( \sin\left(\frac{1}{h}\right) \) oscillates between -1 and 1, leading to: \[ = 0 \] ### Step 3: Check the Value of the Function at \( x = a \) Now we check the value of the function at \( x = a \): \[ f(a) = 0 \] ### Conclusion Since both the left-hand limit and the right-hand limit as \( x \) approaches \( a \) are equal to \( 0 \), and \( f(a) = 0 \), we have: \[ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) = 0 \] Thus, the function \( f(x) \) is continuous at \( x = a \).

To determine the continuity of the function \( f(x) \) at \( x = a \), we need to check the following conditions: 1. The left-hand limit as \( x \) approaches \( a \) exists. 2. The right-hand limit as \( x \) approaches \( a \) exists. 3. The value of the function at \( x = a \) is equal to both limits. The function is defined as follows: \[ ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4.

    Text Solution

    |

  2. f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  3. f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

    Text Solution

    |

  4. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

    Text Solution

    |

  5. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  6. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  7. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  8. If f(x)={(2^(x+2)-16)/(4^x-16),ifx!=2k ,ifx=2i scon t inuou sa tx=2,f...

    Text Solution

    |

  9. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),...

    Text Solution

    |

  10. f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

    Text Solution

    |

  11. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  12. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  13. If the function f(x) = 1/(x+2), then find the points of discountinu...

    Text Solution

    |

  14. Find all point of discountinuity of the function f(t) = (1)/(t^(2)...

    Text Solution

    |

  15. Show that the function f(x) = |sinx+cosx| is continuous at x = p...

    Text Solution

    |

  16. Examine the differentiability of f, where f is defined by f(x) =...

    Text Solution

    |

  17. f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0.

    Text Solution

    |

  18. f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2.

    Text Solution

    |

  19. Show that f(x) = |x-5| is continuous but not differentiable at x =...

    Text Solution

    |

  20. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |