Home
Class 12
MATHS
f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0...

`f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}` at `x = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] at \( x = 0 \), we need to check the left-hand limit and the right-hand limit as \( x \) approaches 0, and see if they are equal to \( f(0) \). ### Step 1: Find the left-hand limit as \( x \) approaches 0 The left-hand limit is given by: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} \] As \( x \) approaches 0 from the left (negative values), \( \frac{1}{x} \) approaches \(-\infty\). Therefore, we can evaluate: \[ e^{\frac{1}{x}} \to e^{-\infty} = 0 \] Thus, we have: \[ \lim_{x \to 0^-} f(x) = \frac{0}{1 + 0} = 0 \] ### Step 2: Find the right-hand limit as \( x \) approaches 0 The right-hand limit is given by: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} \] As \( x \) approaches 0 from the right (positive values), \( \frac{1}{x} \) approaches \(+\infty\). Therefore, we can evaluate: \[ e^{\frac{1}{x}} \to e^{+\infty} = \infty \] Thus, we have: \[ \lim_{x \to 0^+} f(x) = \frac{\infty}{1 + \infty} = \frac{\infty}{\infty} \to 1 \] ### Step 3: Compare the limits and the function value at \( x = 0 \) Now we compare the left-hand limit, right-hand limit, and the value of the function at \( x = 0 \): - Left-hand limit: \( \lim_{x \to 0^-} f(x) = 0 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = 1 \) - Function value: \( f(0) = 0 \) Since the left-hand limit (0) is not equal to the right-hand limit (1), we conclude that: \[ \text{The function } f(x) \text{ is not continuous at } x = 0. \] ### Final Conclusion The function \( f(x) \) is not continuous at \( x = 0 \). ---

To determine the continuity of the function \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1), x ne 0),(,0, x =0):}" at x=0"

f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  2. f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

    Text Solution

    |

  3. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

    Text Solution

    |

  4. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  5. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  6. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  7. If f(x)={(2^(x+2)-16)/(4^x-16),ifx!=2k ,ifx=2i scon t inuou sa tx=2,f...

    Text Solution

    |

  8. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),...

    Text Solution

    |

  9. f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

    Text Solution

    |

  10. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  11. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  12. If the function f(x) = 1/(x+2), then find the points of discountinu...

    Text Solution

    |

  13. Find all point of discountinuity of the function f(t) = (1)/(t^(2)...

    Text Solution

    |

  14. Show that the function f(x) = |sinx+cosx| is continuous at x = p...

    Text Solution

    |

  15. Examine the differentiability of f, where f is defined by f(x) =...

    Text Solution

    |

  16. f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0.

    Text Solution

    |

  17. f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2.

    Text Solution

    |

  18. Show that f(x) = |x-5| is continuous but not differentiable at x =...

    Text Solution

    |

  19. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |

  20. 2^(cos^(2)) x

    Text Solution

    |