Home
Class 12
MATHS
f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),i...

`f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):}` at `x = 0`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have, `f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):}` at `x = 0`.
`:. LHL = underset(xrarr0^(-))(lim)(sqrt(1+kx)-sqrt(1-kx))/(x)`
`= underset(xrarr0^(-))(lim)((sqrt(1+kx)-sqrt(1-kx))/(x)). ((sqrt(1+kx)-sqrt(1+kx))/(sqrt(1+kx)-sqrt(1+kx)))`
`= underset(xrarr0^(-))(lim)(1+kx-1+kx)/(x[sqrt(1+kx)+sqrt(1-kx)])`
`= underset(xrarr0^(-))lim(2kx)/(xsqrt(1+kx)+sqrt(1-kx))`
`= underset(hrarr0)lim(2k)/(sqrt(1+k(0-h))+sqrt(1-k(0-h)))`
` = underset(hrarr0)(lim)(2k)/(sqrt(1-kh) +sqrt(1+kh)) = (2k)/(2) = k`
and `f(0) = (2xx 0+1)/(0-1) = - 1`
`rArr k = - [:' LHL = RHL = f(0)]`
`rArr k = -1`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3x-2,",","for" 0 le x le1):} is continuous at x=0 then find k