Home
Class 12
MATHS
f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):...

`f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):}` at `x = 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the differentiability of the function \( f(x) \) at \( x = 2 \), we need to find the left-hand derivative and the right-hand derivative at that point. The function is defined as follows: \[ f(x) = \begin{cases} 1 + x & \text{if } x \leq 2 \\ 5 - x & \text{if } x > 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Derivative at \( x = 2 \) The left-hand derivative is given by the formula: \[ f'(2^-) = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{-h} \] Since \( 2 - h \) will always be less than or equal to 2 for small \( h \), we use the first case of the function: \[ f(2 - h) = 1 + (2 - h) = 3 - h \] \[ f(2) = 1 + 2 = 3 \] Now substituting these into the left-hand derivative formula: \[ f'(2^-) = \lim_{h \to 0} \frac{(3 - h) - 3}{-h} = \lim_{h \to 0} \frac{-h}{-h} = \lim_{h \to 0} 1 = 1 \] ### Step 2: Calculate the Right-Hand Derivative at \( x = 2 \) The right-hand derivative is given by the formula: \[ f'(2^+) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \] For small \( h \), \( 2 + h \) will be greater than 2, so we use the second case of the function: \[ f(2 + h) = 5 - (2 + h) = 3 - h \] \[ f(2) = 3 \] Now substituting these into the right-hand derivative formula: \[ f'(2^+) = \lim_{h \to 0} \frac{(3 - h) - 3}{h} = \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} -1 = -1 \] ### Step 3: Compare the Left-Hand and Right-Hand Derivatives We have found: \[ f'(2^-) = 1 \quad \text{and} \quad f'(2^+) = -1 \] Since the left-hand derivative is not equal to the right-hand derivative: \[ f'(2^-) \neq f'(2^+) \] ### Conclusion The function \( f(x) \) is not differentiable at \( x = 2 \).

To determine the differentiability of the function \( f(x) \) at \( x = 2 \), we need to find the left-hand derivative and the right-hand derivative at that point. The function is defined as follows: \[ f(x) = \begin{cases} 1 + x & \text{if } x \leq 2 \\ 5 - x & \text{if } x > 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x) = {{:(kx^(2)"," if x le 2),(3", " if x gt 2):} at x = 2

f(x)={{:(x, if x le 1),(5, if x gt 1):} , then x=-1,x=0,and x=2 is

If f(x)={{:(x, if x le 1),(5, if x gt 1):} , then x=0,x=1,and x=2 is

Show tha the function f (x) = {{:(1+x"," if x le 2 ,), ( 5-x "," if x gt 2):} is not differentiable at x = 2 .

Discuss the continuity of the function f(x) ={(1+x^2,x le 1),(1-x, x gt 1):} at x=1.

Is the function f defined by f(x)={{:(x, if x le 1),(5, if x gt 1):} continuous at x = 0? At x = 2 ?

Discuss the continuity of f(x) = {(x+2, x le 1),(x-2, x gt1):} at x=1.

Show that the function f(x)={:{(1+x ", " x le2","),(5-x", "x gt2):} is not differentiable at x=2