Home
Class 12
MATHS
(8^(x))/(x^(8))...

`(8^(x))/(x^(8))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{8^x}{x^8} \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = \frac{8^x}{x^8} \). ### Step 2: Take the logarithm of both sides Taking the natural logarithm of both sides, we have: \[ \log y = \log \left( \frac{8^x}{x^8} \right) \] ### Step 3: Apply logarithmic properties Using the properties of logarithms, we can rewrite the right-hand side: \[ \log y = \log(8^x) - \log(x^8) \] Using the property \( \log(a^b) = b \log a \): \[ \log y = x \log 8 - 8 \log x \] ### Step 4: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(x \log 8 - 8 \log x) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \log 8 - 8 \cdot \frac{1}{x} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \log 8 - \frac{8}{x} \right) \] ### Step 6: Substitute back for \( y \) Substituting back \( y = \frac{8^x}{x^8} \): \[ \frac{dy}{dx} = \frac{8^x}{x^8} \left( \log 8 - \frac{8}{x} \right) \] ### Final Result Thus, the derivative of the function \( y = \frac{8^x}{x^8} \) is: \[ \frac{dy}{dx} = \frac{8^x}{x^8} \left( \log 8 - \frac{8}{x} \right) \] ---

To differentiate the function \( y = \frac{8^x}{x^8} \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = \frac{8^x}{x^8} \). ### Step 2: Take the logarithm of both sides Taking the natural logarithm of both sides, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x^(8)+(1)/(x^(8))=a then find (i)x+(1)/(x)

If x^(2)-x-1=0 then the value of x^(8)+(1)/(x^(8)) equals

(x+(1)/(x))(x-(1)/(x))(x^(2)+(1)/(x^(2))-1)(x^(2)+(1)/(x^(2))+1) is equal to x^(6)-(1)/(x^(6))(b)x^(8)-(1)/(x^(8))(c)x^(6)+(1)/(x^(6))(d)x^(8)+(1)/(x^(8))

f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x) find the inverse of the function

int( (5x+8))/(x^(2)(3x+8))dx

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

The equation (log_(8)((8)/(x^(2))))/((log_(8)x)^(2))=3 has

if x+(1)/(4x)=(3)/(2) find the value of 8x^(3)+(1)/(8x^(3))