Home
Class 12
MATHS
log(x+sqrt(x^(2)+a))...

`log(x+sqrt(x^(2)+a))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log(x + \sqrt{x^2 + a}) \), we will follow these steps: ### Step 1: Identify the function Let \[ y = \log(x + \sqrt{x^2 + a}) \] ### Step 2: Differentiate using the chain rule We will differentiate \( y \) with respect to \( x \). Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a}} \cdot \frac{d}{dx}(x + \sqrt{x^2 + a}) \] ### Step 3: Differentiate the inner function Now, we need to differentiate the inner function \( x + \sqrt{x^2 + a} \): \[ \frac{d}{dx}(x + \sqrt{x^2 + a}) = 1 + \frac{1}{2\sqrt{x^2 + a}} \cdot \frac{d}{dx}(x^2 + a) \] Since \( \frac{d}{dx}(x^2 + a) = 2x \), we have: \[ \frac{d}{dx}(x + \sqrt{x^2 + a}) = 1 + \frac{1}{2\sqrt{x^2 + a}} \cdot 2x = 1 + \frac{x}{\sqrt{x^2 + a}} \] ### Step 4: Substitute back into the derivative Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a}} \left( 1 + \frac{x}{\sqrt{x^2 + a}} \right) \] ### Step 5: Simplify the expression We can simplify this further: \[ \frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + a}}}{x + \sqrt{x^2 + a}} \] To combine the terms in the numerator: \[ \frac{dy}{dx} = \frac{\sqrt{x^2 + a} + x}{(x + \sqrt{x^2 + a}) \sqrt{x^2 + a}} \] ### Step 6: Final expression Thus, the final result for the derivative is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a}} \]

To differentiate the function \( y = \log(x + \sqrt{x^2 + a}) \), we will follow these steps: ### Step 1: Identify the function Let \[ y = \log(x + \sqrt{x^2 + a}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

log(x+sqrt(1+x^(2)))

log (x+sqrt(x^2-1))

Diferentiate x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))

Differentiate the following functions with respect to log(x+sqrt(x^(2)+1))

The function f(x)=log(x+sqrt(x^(2)+1)) is

The function f(x)=log(x+sqrt(x^(2)+1)), is

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

Differentiate log(x+sqrt(x^(2)+1)) with respect to x: