Home
Class 12
MATHS
sin^(-1)'(1)/(sqrt(x+1))...

`sin^(-1)'(1)/(sqrt(x+1))`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `y = sin^(-1)'(1)/(sqrt(x+1))`
`:. (dy)/(dx) = d/dx sin^(-1)'(1)/(sqrt(x+1))`
`= (1)/(sqrt(1-((1)/(sqrt(x+1)))^(2))).(d)/(dx) (1)/((x+1)^(1//2)), [:' (d)/(dx) (sin^(-1)x) = (1)/(sqrt(1-x^(2)))]`
`= (1)/(sqrt((x+1-1)/(x+1))).(d)/(dx).(x+1)^(-1//2)`
` = sqrt((x+1)/(x)).(-1)/(2)(x+1)^(-(1)/(2)-1).(d)/(dx)(x+1)`
`= ((x+1)^(1//2))/(x^(1//2)) = (-(1)/(2))(x+1)^(-3//2)= (-1)/(2sqrt(x)).((1)/(x+1))`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

sin^(-1){(1)/(sqrt(1+x^(2)))}

Differentiate sin^(-1)((1)/(sqrt(1+x^(2)))) with respect to x

Differentiate the following function with respect to x:sin^(-1)((1)/(sqrt(1+x^(2))))

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

int e^(x)(sin^(-1)x+(1)/(sqrt(1-x^(2))))dx

inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx=?

Evaluate: int e^(x)(sqrt(1-x^(2))sin^(-1)x+1)/(sqrt(1-x^(2)))dx

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

(tan^(-1)(1-x))/(1+x)=(1)/(2)(sin^(-1)x)/(sqrt(1+x^(2)))