Home
Class 12
MATHS
(x+1)^(2)(x+2)^(3)(x+3)^(4)...

`(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let ` y = (x+1)^(2)(x+2)^(3)(x+3)^(4)`
`:. logy = log{(x+1)^(2).(x+2)^(3)(x+3)^(4)}`
`= log (x+1)^(2)+log(x+2)^(3)+log(x+3)^(4)`
and `(d)/(dy)logy.(dy)/(dx)= (dy)/(dx)=(d)/(dx)[2log(x+1)]+(d)/(dx)[3log(x+2)]+(d)/(dx)[4log(logx)=1/x]`
`1/y.(dy)/(dx) = (2)/((x+1)).(d)/(dx)(x+1)+3.(1)/((x+2)).(d)/(dx)(x+2)+4.(1)/((x+3)).(d)/(dx)(x+3)[:'(d)/(dx)(logx)=1/x]`
`=[(2)/(x+1)+(3)/(x+2)+(4)/(x+3)]`
`:. (dy)/(dx) = y [(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
`= (x+1)^(2).(x+2)^(3).(x+3)^(4)[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
` = (x+1)^(2).(x+2)^(3).(x+3)^(4)`
`[(2(x+2)(x+3)+3(x+1)(x+3)+4(x+1)(x+2))/((x+1)(x+2)(x+3))]`
`= ((x+1)^(2)(x+2)^(3)(x+3)^(4))/((x+1)(x+2)(x+3))`
`[2(x^(2)+5x+6)+3(x^(2)+4x+3)+4(x^(2)+3x+2)]`
`= (x+1)(x+2)^(2)(x+3)^(3)`
`[2x^(2)+10x+12+13x^(2)+12+9+4x^(2)+12x+8]`
`=(x+1)(x+2)^(2)(x+3)^(3)[9x^(2)+34x+29]`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(324) in the expansion of (x+1)(x2)^(2)(x+3)^(3)(x4)^(4)......(x24)^(24)(x+25)^(25) is

If f'(x)=(x-1)(x-2)^(2)(x-3)^(3)(x-4)^(4)(x-5)^(5) , then the number of local minima of f(x) is

If f'(x)=(x-1)(x-2)^(2)(x-3)^(3)(x-4)^(4)(x-5)^(5) , then the number of local minima of f(x) is

The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3)(x-4)^(4)…(x+49)^(49)(x-50)^(50) is

The coefficient of x^(10) in the expansion of (1+x)^(2)(1+x^(2))^(3)(1+x^(3))^(4) is equal to

Coefficient of x(n^(2)+n-14)/(2) in,(x-1)(x^(2)-2)(x^(3)-3)(x^(4)-4)......(x^(n)-n),(n>=8) is

Solve x(x+2)^(2)(x-1)^(5)(2x-3)(x-3)^(4)>=0

Consider the system of equations x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5 and x_1+2x_2+3x_3+4x_4+5x_5=15 where x_1,x_2,x_3,x_4,x_5 are positive real numbers. Then numbers of (x_1,x_2,x_3,x_4,x_5) is ___________.

Sovle x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. (sinx)^(cosx)

    Text Solution

    |

  2. sin^(m)x.cos^(n)x

    Text Solution

    |

  3. (x+1)^(2)(x+2)^(3)(x+3)^(4)

    Text Solution

    |

  4. cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4) ltx lt(pi)/(4)

    Text Solution

    |

  5. Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi with ...

    Text Solution

    |

  6. tan^(-1)(secx+tanx),(-pi)/(2) lt x lt (pi)/(2)

    Text Solution

    |

  7. Differentiate the following functions with respect to x : tan^(-1)(...

    Text Solution

    |

  8. If y=sec^(-1)(1/(2x^2-1));0<x<1/(sqrt(2)), then find (dy)/(dx)dot

    Text Solution

    |

  9. Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))<x/a<1/...

    Text Solution

    |

  10. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  11. x = t + (1)/(t), y = t - 1/t

    Text Solution

    |

  12. x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-(1)/(theta))

    Text Solution

    |

  13. x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta

    Text Solution

    |

  14. sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

    Text Solution

    |

  15. x=(1+logt)/(t^(2)), y=(3+2logt)/(t)

    Text Solution

    |

  16. If x= e^(cos2t) and y = e^(sin2t), then move that (dy)/(dx) = -(yl...

    Text Solution

    |

  17. If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t), then show that ((d...

    Text Solution

    |

  18. If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

    Text Solution

    |

  19. Differentiate (x)/(sinx) w.r.t . sinx.

    Text Solution

    |

  20. Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x, when x ...

    Text Solution

    |