Home
Class 12
MATHS
Differentiate tan^(-1)((3a^2x-x^3)/(a^3-...

Differentiate `tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Text Solution

Verified by Experts

The correct Answer is:
N/a

`y = tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))`
Put `x = a tan theta rArr theta = tan^(-1)'x/a`
`:. y = tan^(-1)[(3tantheta-tan^(3)theta)/(1-3tan^(2)theta)], [:' tan3theta = (3tantheta-tan^(3)theta)/(1-3tan^(2)theta)]`
`=tan^(-1)(tan3theta) = 3theta`
`= 3tan^(-1)'(x)/(a), [:' theta = tan^(-1)'x/a]`
`:. (dy)/(dx) = 3.(d)/(dx) tan^(-1)'(x)/(a)=3.[(1)/(1+(x^(2))/(a^(2)))].(d)/(dx).(x/a)`
`= 3.(a^(2))/(a^(2)+x^(2)).(1)/(a) = (3a)/(a^(2)+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -(1)/(sqrt(3)) (1)/(sqrt(3))(3)*xlt1/sqrt(3)

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

Differentiate 'tan^(^^)(-1)((3a^(^^)2x-x^(^^)3)/(a^^3-3ax^(^^)2),lambda-1/(sqrt(3))

Differentiate tan^(-1)((1)/(1-x+x^(2)))

Differentiate tan^(-1)((sqrt(x)-x)/(1+x^(3/2)))

Differentiate : (tan^(3)x)/(ax^(2)+b)

If -1/(sqrt(3))