Home
Class 12
MATHS
x = t + (1)/(t), y = t - 1/t...

`x = t + (1)/(t), y = t - 1/t`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`:' x =t + 1/t` and `y = t - (1)/(t)`
`:. (dx)/(dt)= (d)/(dt)(t+1/t)` and `(dy)/(dt)=(d)/(dt)(t-(1)/(t))`
`rArr (dx)/(dt)=1+(-1)t^(-2)`and ` (dy)/(dt)=1-(-1)t^(-2)`
`rArr (dx)/(dt) =1-1/(t^(2))` and `(dy)/(dt)=1+(1)/(t^(2))`
`rArr (dx)/(dt) = (t^(2)- 1)/(t^(2))` and `(dy)/(dt) = (t^(2)+1)/(t^(2))`
`:.(dy)/(dx) = (dy//dt)/(dx//dt) = (t^(2)+1//t^(2))/(t^(2)-1//t^(2)) = (t^(2)+1)/(t^(2) - 1)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

The equation x =1/2 (t+ (1)/(t)), y = 1/2 (t - 1/t), t ne 0 represents

IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) represents

Show that the locus represented by x = 1/2 a (t + 1/t) , y = 1/2 a (t - 1/t) is a rectangular hyperbola. Show also that equation to the normal at the point 't' is x/(t^(2) + 1) + y/(t^(2) - 1) = a/t .

If t is a parameter, then x=a(t+(1)/(t)) , y=b(t-(1)/(t)) represents

The equation of tangent to the curve x=(1)/(t), y=t-(1)/(t) at t=2 is

The equation of normal to the curve x=(1)/(t), y=t-(1)/(t)" at "t=2 is

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))<x/a<1/...

    Text Solution

    |

  2. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  3. x = t + (1)/(t), y = t - 1/t

    Text Solution

    |

  4. x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-(1)/(theta))

    Text Solution

    |

  5. x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta

    Text Solution

    |

  6. sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

    Text Solution

    |

  7. x=(1+logt)/(t^(2)), y=(3+2logt)/(t)

    Text Solution

    |

  8. If x= e^(cos2t) and y = e^(sin2t), then move that (dy)/(dx) = -(yl...

    Text Solution

    |

  9. If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t), then show that ((d...

    Text Solution

    |

  10. If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

    Text Solution

    |

  11. Differentiate (x)/(sinx) w.r.t . sinx.

    Text Solution

    |

  12. Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x, when x ...

    Text Solution

    |

  13. sin(xy) + (x)/(y) = x^(2) - y

    Text Solution

    |

  14. sec(x+y) = xy

    Text Solution

    |

  15. tan^(-1)(x^(2)+y^(2)) = a

    Text Solution

    |

  16. (x^(2)+y^(2))^(2) =xy

    Text Solution

    |

  17. If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, then show that (dy)/(dx).(dx)/(dy)...

    Text Solution

    |

  18. If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx).

    Text Solution

    |

  19. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  20. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |