Home
Class 12
MATHS
x=e^(theta)(theta+(1)/(theta)),y = e^(-t...

`x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-(1)/(theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = e^{\theta} \left( \theta + \frac{1}{\theta} \right)\) and \(y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = e^{\theta} \left( \theta + \frac{1}{\theta} \right) \] Using the product rule: \[ \frac{dx}{d\theta} = \frac{d}{d\theta} \left( e^{\theta} \right) \left( \theta + \frac{1}{\theta} \right) + e^{\theta} \frac{d}{d\theta} \left( \theta + \frac{1}{\theta} \right) \] Calculating the derivatives: 1. \(\frac{d}{d\theta} e^{\theta} = e^{\theta}\) 2. \(\frac{d}{d\theta} \left( \theta + \frac{1}{\theta} \right) = 1 - \frac{1}{\theta^2}\) So, \[ \frac{dx}{d\theta} = e^{\theta} \left( \theta + \frac{1}{\theta} \right) + e^{\theta} \left( 1 - \frac{1}{\theta^2} \right) \] Combining terms: \[ \frac{dx}{d\theta} = e^{\theta} \left( \theta + \frac{1}{\theta} + 1 - \frac{1}{\theta^2} \right) \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right) \] Using the product rule: \[ \frac{dy}{d\theta} = \frac{d}{d\theta} \left( e^{-\theta} \right) \left( \theta - \frac{1}{\theta} \right) + e^{-\theta} \frac{d}{d\theta} \left( \theta - \frac{1}{\theta} \right) \] Calculating the derivatives: 1. \(\frac{d}{d\theta} e^{-\theta} = -e^{-\theta}\) 2. \(\frac{d}{d\theta} \left( \theta - \frac{1}{\theta} \right) = 1 + \frac{1}{\theta^2}\) So, \[ \frac{dy}{d\theta} = -e^{-\theta} \left( \theta - \frac{1}{\theta} \right) + e^{-\theta} \left( 1 + \frac{1}{\theta^2} \right) \] Combining terms: \[ \frac{dy}{d\theta} = e^{-\theta} \left( -\theta + \frac{1}{\theta} + 1 + \frac{1}{\theta^2} \right) \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{e^{-\theta} \left( -\theta + \frac{1}{\theta} + 1 + \frac{1}{\theta^2} \right)}{e^{\theta} \left( \theta + \frac{1}{\theta} + 1 - \frac{1}{\theta^2} \right)} \] ### Step 4: Simplify the expression The \(e^{-\theta}\) in the numerator and \(e^{\theta}\) in the denominator combine to give: \[ \frac{dy}{dx} = e^{-2\theta} \cdot \frac{-\theta + \frac{1}{\theta} + 1 + \frac{1}{\theta^2}}{\theta + \frac{1}{\theta} + 1 - \frac{1}{\theta^2}} \] ### Final Result Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = e^{-2\theta} \cdot \frac{-\theta + \frac{1}{\theta} + 1 + \frac{1}{\theta^2}}{\theta + \frac{1}{\theta} + 1 - \frac{1}{\theta^2}} \]

To find \(\frac{dy}{dx}\) given the parametric equations \(x = e^{\theta} \left( \theta + \frac{1}{\theta} \right)\) and \(y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = e^{\theta} \left( \theta + \frac{1}{\theta} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=e^(theta)(theta+(1)/(theta)) and y=e^(-theta)(theta-(1)/(theta))

Find (dy)/(dx), when x=e^(theta)(theta+(1)/(theta)) and y=e^(-theta)(theta-(1)/(theta))

If x= e^(theta )(sin theta - cos theta ) , y= e^(theta ) ( sin theta + cos theta ) then (dy)/(dx) at theta =(pi)/(4) is

underset(theta=0)Lim(e^(theta)+e^(-theta)+2costheta-4)/(theta^(4))["form"(0)/(0)]

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

The value of tan^(-1)((x cos theta)/(1-x sin theta))-cot^(-1)((cos theta)/(x-sin theta)) is 2 theta(b)theta (c) (theta)/(2)(d) independent of theta

(1)/(csc theta-cot theta)-(1)/(sin theta)=(1)/(sin theta)-(1)/(csc theta+cot theta)

y=1/((1+tan theta)^(sin theta-cos theta)+(cot theta)^(cos theta-cot theta))+ 1/((1+tan theta)^(cos theta-sin theta)+(cot theta)^(sin theta-cottheta)) +1/((1+tan theta)^(cos theta-cot theta)+(cot theta)^(cot theta-sin theta)) then (dy)/(dx) at theta=pi/3 is

Prove that (sec theta+tan theta-1)/(tan theta-sec theta+1)=(cos theta)/(1-sin theta)