Home
Class 12
MATHS
x=3costheta-2cos^(3)theta, y = 3 sin th...

`x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the parametric equations given by: \[ x = 3 \cos \theta - 2 \cos^3 \theta \] \[ y = 3 \sin \theta - 2 \sin^3 \theta \] We will find \(\frac{dy}{dx}\) using the chain rule. ### Step 1: Differentiate \(x\) with respect to \(\theta\) We differentiate \(x\) as follows: \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(3 \cos \theta) - \frac{d}{d\theta}(2 \cos^3 \theta) \] Using the chain rule and product rule: \[ \frac{dx}{d\theta} = -3 \sin \theta - 2 \cdot 3 \cos^2 \theta \cdot (-\sin \theta) \] \[ = -3 \sin \theta + 6 \cos^2 \theta \sin \theta \] \[ = \sin \theta (6 \cos^2 \theta - 3) \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Now we differentiate \(y\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(3 \sin \theta) - \frac{d}{d\theta}(2 \sin^3 \theta) \] Again using the chain rule and product rule: \[ \frac{dy}{d\theta} = 3 \cos \theta - 2 \cdot 3 \sin^2 \theta \cdot \cos \theta \] \[ = 3 \cos \theta - 6 \sin^2 \theta \cos \theta \] \[ = \cos \theta (3 - 6 \sin^2 \theta) \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\cos \theta (3 - 6 \sin^2 \theta)}{\sin \theta (6 \cos^2 \theta - 3)} \] ### Step 4: Simplify the expression Now we can simplify the expression: \[ \frac{dy}{dx} = \frac{\cos \theta (3 - 6 \sin^2 \theta)}{\sin \theta (6 \cos^2 \theta - 3)} \] Using the identities \(3 - 6 \sin^2 \theta = 3(1 - 2 \sin^2 \theta) = 3 \cos 2\theta\) and \(6 \cos^2 \theta - 3 = 3(2 \cos^2 \theta - 1) = 3 \cos 2\theta\): \[ \frac{dy}{dx} = \frac{\cos \theta \cdot 3 \cos 2\theta}{\sin \theta \cdot 3 \cos 2\theta} \] Cancelling \(3 \cos 2\theta\) (assuming \(\cos 2\theta \neq 0\)): \[ \frac{dy}{dx} = \frac{\cos \theta}{\sin \theta} = \cot \theta \] ### Final Answer \[ \frac{dy}{dx} = \cot \theta \]

To solve the problem, we need to differentiate the parametric equations given by: \[ x = 3 \cos \theta - 2 \cos^3 \theta \] \[ y = 3 \sin \theta - 2 \sin^3 \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

If x =3 cos theta -2 cos ^(3) theta, y=3sin theta -2 sin ^(3) theta ,then " at " theta =(pi)/(4),(dy)/(dx)

Show that the equation of the normal at any point 'theta' on the curvex = 3 cos theta -cos^(3) theta, y=3 sin theta -sin^(3) theta is 4(y cos^(3)theta -x sin^(3) theta)=3 sin 4 theta.

If x=3cos theta-2cos^(3)theta,y=3sin theta-2sin^(3)theta, then (dy)/(dx) is

x=3costheta-2cos^(3)theta,y=3sintheta-2sin^(3)theta" then find dy/dx at "theta=(pi)/(4)

If x=3cos theta-cos^(3)theta y=3sin theta-sin^(3)theta find (dy)/(dx)

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.