Home
Class 12
MATHS
sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t...

`sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given \( \sin x = \frac{2t}{1+t^2} \) and \( \tan y = \frac{2t}{1-t^2} \), we need to find \( \frac{dy}{dx} \). We will differentiate both equations with respect to \( t \) and then use the chain rule to find \( \frac{dy}{dx} \). ### Step 1: Differentiate \( \sin x \) with respect to \( t \) Given: \[ \sin x = \frac{2t}{1+t^2} \] Using the chain rule: \[ \frac{d}{dt}(\sin x) = \cos x \cdot \frac{dx}{dt} \] Now, differentiate the right-hand side using the quotient rule: \[ \frac{d}{dt}\left(\frac{2t}{1+t^2}\right) = \frac{(1+t^2)(2) - (2t)(2t)}{(1+t^2)^2} \] \[ = \frac{2(1+t^2) - 4t^2}{(1+t^2)^2} = \frac{2 - 2t^2}{(1+t^2)^2} \] Setting the derivatives equal: \[ \cos x \cdot \frac{dx}{dt} = \frac{2(1-t^2)}{(1+t^2)^2} \] ### Step 2: Differentiate \( \tan y \) with respect to \( t \) Given: \[ \tan y = \frac{2t}{1-t^2} \] Using the chain rule: \[ \frac{d}{dt}(\tan y) = \sec^2 y \cdot \frac{dy}{dt} \] Now, differentiate the right-hand side using the quotient rule: \[ \frac{d}{dt}\left(\frac{2t}{1-t^2}\right) = \frac{(1-t^2)(2) - (2t)(-2t)}{(1-t^2)^2} \] \[ = \frac{2(1-t^2) + 4t^2}{(1-t^2)^2} = \frac{2 + 2t^2}{(1-t^2)^2} \] Setting the derivatives equal: \[ \sec^2 y \cdot \frac{dy}{dt} = \frac{2(1+t^2)}{(1-t^2)^2} \] ### Step 3: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] From the previous steps, we have: \[ \frac{dy}{dt} = \frac{2(1+t^2)}{(1-t^2)^2 \sec^2 y} \] \[ \frac{dx}{dt} = \frac{2(1-t^2)}{(1+t^2)^2 \cos x} \] Thus: \[ \frac{dy}{dx} = \frac{\frac{2(1+t^2)}{(1-t^2)^2 \sec^2 y}}{\frac{2(1-t^2)}{(1+t^2)^2 \cos x}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(1+t^2) \cdot (1+t^2)^2 \cos x}{(1-t^2)^2 \cdot (1-t^2)} \] ### Step 4: Final Simplification After simplifying, we can write: \[ \frac{dy}{dx} = \frac{(1+t^2)^3 \cos x}{(1-t^2)^3} \]

To solve the problem given \( \sin x = \frac{2t}{1+t^2} \) and \( \tan y = \frac{2t}{1-t^2} \), we need to find \( \frac{dy}{dx} \). We will differentiate both equations with respect to \( t \) and then use the chain rule to find \( \frac{dy}{dx} \). ### Step 1: Differentiate \( \sin x \) with respect to \( t \) Given: \[ \sin x = \frac{2t}{1+t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)),quad find (dy)/(dx)

If sinx=(2t)/(1+t^(2)),tany=(2t)/(1-t^(2)),"find "dy/dx

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=tan ((1)/(2) sin ^(-1)((2t)/( 1+t^(2))) +(1)/(2)cos ^(-1) ((1-t^(2))/( 1+t^(2)))), then y= (2t)/( 1-t^(2)), then (dy)/(dx)=

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),-1

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. x=e^(theta)(theta+(1)/(theta)),y = e^(-theta)(theta-(1)/(theta))

    Text Solution

    |

  2. x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta

    Text Solution

    |

  3. sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

    Text Solution

    |

  4. x=(1+logt)/(t^(2)), y=(3+2logt)/(t)

    Text Solution

    |

  5. If x= e^(cos2t) and y = e^(sin2t), then move that (dy)/(dx) = -(yl...

    Text Solution

    |

  6. If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t), then show that ((d...

    Text Solution

    |

  7. If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

    Text Solution

    |

  8. Differentiate (x)/(sinx) w.r.t . sinx.

    Text Solution

    |

  9. Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x, when x ...

    Text Solution

    |

  10. sin(xy) + (x)/(y) = x^(2) - y

    Text Solution

    |

  11. sec(x+y) = xy

    Text Solution

    |

  12. tan^(-1)(x^(2)+y^(2)) = a

    Text Solution

    |

  13. (x^(2)+y^(2))^(2) =xy

    Text Solution

    |

  14. If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, then show that (dy)/(dx).(dx)/(dy)...

    Text Solution

    |

  15. If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx).

    Text Solution

    |

  16. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  17. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |

  18. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  19. If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y), then prove that (dy)/(dx) = ...

    Text Solution

    |

  20. If y = tan^(-1)x, then find (d^(2)y)/(dx^(2)) in term of y alone.

    Text Solution

    |