Home
Class 12
MATHS
x=(1+logt)/(t^(2)), y=(3+2logt)/(t)...

`x=(1+logt)/(t^(2)), y=(3+2logt)/(t)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the parametric equations: \[ x = \frac{1 + \log t}{t^2}, \quad y = \frac{3 + 2 \log t}{t} \] ### Step 1: Differentiate \(x\) with respect to \(t\) We will use the quotient rule for differentiation, which states that if \(u\) and \(v\) are functions of \(t\), then: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Here, let \(u = 1 + \log t\) and \(v = t^2\). 1. Differentiate \(u\): \[ \frac{du}{dt} = \frac{d}{dt}(1 + \log t) = \frac{1}{t} \] 2. Differentiate \(v\): \[ \frac{dv}{dt} = \frac{d}{dt}(t^2) = 2t \] Now, applying the quotient rule: \[ \frac{dx}{dt} = \frac{t^2 \cdot \frac{1}{t} - (1 + \log t) \cdot 2t}{(t^2)^2} \] Simplifying this: \[ \frac{dx}{dt} = \frac{t - 2t(1 + \log t)}{t^4} = \frac{t - 2t - 2t \log t}{t^4} = \frac{-t - 2t \log t}{t^4} = \frac{-1 - 2 \log t}{t^3} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Using the same quotient rule, let \(u = 3 + 2 \log t\) and \(v = t\). 1. Differentiate \(u\): \[ \frac{du}{dt} = \frac{d}{dt}(3 + 2 \log t) = \frac{2}{t} \] 2. Differentiate \(v\): \[ \frac{dv}{dt} = \frac{d}{dt}(t) = 1 \] Now, applying the quotient rule: \[ \frac{dy}{dt} = \frac{t \cdot \frac{2}{t} - (3 + 2 \log t) \cdot 1}{t^2} \] Simplifying this: \[ \frac{dy}{dt} = \frac{2 - (3 + 2 \log t)}{t^2} = \frac{2 - 3 - 2 \log t}{t^2} = \frac{-1 - 2 \log t}{t^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{-1 - 2 \log t}{t^2}}{\frac{-1 - 2 \log t}{t^3}} = \frac{-1 - 2 \log t}{t^2} \cdot \frac{t^3}{-1 - 2 \log t} \] The terms \(-1 - 2 \log t\) cancel out: \[ \frac{dy}{dx} = t \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = t \]

To solve the problem, we need to find \(\frac{dy}{dx}\) given the parametric equations: \[ x = \frac{1 + \log t}{t^2}, \quad y = \frac{3 + 2 \log t}{t} \] ### Step 1: Differentiate \(x\) with respect to \(t\) ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t),quad find (dy)/(dx)

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to a.0 b.-1 c.1 d.2

if x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfies f(x)*{(dy)/(dx)}^(3)=1+(dy)/(dx) then f(x) is:

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)