Home
Class 12
MATHS
If x= e^(cos2t) and y = e^(sin2t), the...

If `x= e^(cos2t)` and `y = e^(sin2t)`, then move that `(dy)/(dx) = -(ylogx)/(xlogy)`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

`:' x = e^(cos2t)` and ` y = e^(sin2t)`
`:. (dx)/(dt) = (d)/(dt)e^(cos2t) = e^(cos2t).(d)/(dt) cos 2t`
`= e^(cos2t).(-sin2t).(d)/(dt) (2t)`
`(dx)/(dt) = - 2e^(cos2t).sin2t"......"(i)`
and `(dy)/(dt) = (d)/(dt)e^(sin2t)=e^(sin2t).(d)/(dt) sin 2t`
`=e^(sin2t)cos2t.(d)/(dt)2t`
`= 2e^(sin2t).cos2t"......"(ii)`
`:. (dy)/(dx) = (dy//dt)/(dx//dt) = (2e^(sin2t).cos2t)/(-2e^(cos2t).sin2t)"`
`= (e^(sin2t).cos2t)/(e^(cos2t).sin2t)"....."(iii)`
We know that , `logx=cos2t.loge=cos2t"......(iv)`
and `logy = sin2t.loge=sin2t"....."(v)`
`:. (dy)/(dx) = (-ylogx)/(xlogy)`
[using Eqs. (iv) and (v) in Eq. (iii) and `x=e(cos2t), y = e^(sin2t)`]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If x=e^(sin3t),y=e^(cos3t),"show that "(dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(t)cost and y=e^(t)sint , then what is (dx)/(dy) at t=0 equal to?

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

If x^(y)=y^(x) then show that dy/dx=(y(xlogy-y))/(x(ylogx-x)) .

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=sint and y=cos2t , then (dy)/(dx) =

If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), show that at (pi)/(4),(dy)/(dx)=(b)/(a)