Home
Class 12
MATHS
If x = a sin2t(1+cos2t) and y =b cos 2...

If `x = a sin2t(1+cos2t)` and `y =b cos 2t(1-cos2t)`, then show that `((dy)/(dx))_(t=pi//4) = (b)/(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) given the equations: \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] ### Step 1: Differentiate \(x\) with respect to \(t\) Using the product rule, we differentiate \(x\): \[ \frac{dx}{dt} = a \left( \sin(2t) \cdot \frac{d}{dt}(1 + \cos(2t)) + (1 + \cos(2t)) \cdot \frac{d}{dt}(\sin(2t)) \right) \] Calculating the derivatives: \[ \frac{d}{dt}(1 + \cos(2t)) = -2\sin(2t) \] \[ \frac{d}{dt}(\sin(2t)) = 2\cos(2t) \] Substituting these back into the equation for \(\frac{dx}{dt}\): \[ \frac{dx}{dt} = a \left( \sin(2t)(-2\sin(2t)) + (1 + \cos(2t))(2\cos(2t)) \right) \] \[ = a \left( -2\sin^2(2t) + 2\cos(2t)(1 + \cos(2t)) \right) \] \[ = 2a \left( \cos(2t) + \cos^2(2t) - \sin^2(2t) \right) \] Using the identity \(\cos^2(2t) - \sin^2(2t) = \cos(4t)\): \[ \frac{dx}{dt} = 2a \left( \cos(2t) + \frac{1}{2}\cos(4t) \right) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Similarly, we differentiate \(y\): \[ \frac{dy}{dt} = b \left( \cos(2t) \cdot \frac{d}{dt}(1 - \cos(2t)) + (1 - \cos(2t)) \cdot \frac{d}{dt}(\cos(2t)) \right) \] Calculating the derivatives: \[ \frac{d}{dt}(1 - \cos(2t)) = 2\sin(2t) \] \[ \frac{d}{dt}(\cos(2t)) = -2\sin(2t) \] Substituting these back into the equation for \(\frac{dy}{dt}\): \[ \frac{dy}{dt} = b \left( \cos(2t)(2\sin(2t)) + (1 - \cos(2t))(-2\sin(2t)) \right) \] \[ = b \left( 2\sin(2t)\cos(2t) - 2\sin(2t)(1 - \cos(2t)) \right) \] \[ = 2b \sin(2t) \left( \cos(2t) - (1 - \cos(2t)) \right) \] \[ = 2b \sin(2t)(2\cos(2t) - 1) \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the expressions we derived: \[ \frac{dy}{dx} = \frac{2b \sin(2t)(2\cos(2t) - 1)}{2a \left( \cos(2t) + \frac{1}{2}\cos(4t) \right)} \] ### Step 4: Evaluate at \(t = \frac{\pi}{4}\) Substituting \(t = \frac{\pi}{4}\): \[ \sin(2t) = \sin\left(\frac{\pi}{2}\right) = 1 \] \[ \cos(2t) = \cos\left(\frac{\pi}{2}\right) = 0 \] \[ \cos(4t) = \cos(\pi) = -1 \] Thus, we have: \[ \frac{dy}{dx} = \frac{2b(1)(2(0) - 1)}{2a \left( 0 + \frac{1}{2}(-1) \right)} \] \[ = \frac{-2b}{-a} = \frac{b}{a} \] ### Conclusion We have shown that: \[ \left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{b}{a} \]

To solve the problem, we need to find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) given the equations: \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x = a sin 2t(1 + cos 2t) and y = b cos 2 t(1 – cos 2 t), show that ((d y)/(d x))_(at t =pi/4)=b/a.

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), show that at (pi)/(4),(dy)/(dx)=(b)/(a)

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

x=a sin 2t(1+cccos 2t ),y=b cos2 t (1-cos 2t) find dy/dx

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

If x=a(cos2t+2t sin2t) and y=a(sin2t-2t cos2t), then find (d^(2)y)/(dx^(2))

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)