Home
Class 12
MATHS
Differentiate (x)/(sinx) w.r.t . sinx....

Differentiate `(x)/(sinx)` w.r.t . sinx.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \frac{x}{\sin x} \) with respect to \( \sin x \), we will use the chain rule and the quotient rule. Here’s the step-by-step solution: ### Step 1: Define the Variables Let: - \( u = x \) - \( v = \sin x \) We need to find \( \frac{du}{dv} \). ### Step 2: Find \( \frac{du}{dx} \) Since \( u = x \), we differentiate with respect to \( x \): \[ \frac{du}{dx} = 1 \] ### Step 3: Find \( \frac{dv}{dx} \) Since \( v = \sin x \), we differentiate with respect to \( x \): \[ \frac{dv}{dx} = \cos x \] ### Step 4: Find \( \frac{du}{dv} \) Using the chain rule, we can express \( \frac{du}{dv} \) as: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{1}{\cos x} \] ### Step 5: Differentiate \( \frac{x}{\sin x} \) using the Quotient Rule Now, we differentiate \( \frac{x}{\sin x} \) with respect to \( x \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{\sin x}\right) = \frac{\sin x \cdot \frac{d}{dx}(x) - x \cdot \frac{d}{dx}(\sin x)}{(\sin x)^2} \] Calculating the derivatives: - \( \frac{d}{dx}(x) = 1 \) - \( \frac{d}{dx}(\sin x) = \cos x \) Substituting these into the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{\sin x}\right) = \frac{\sin x \cdot 1 - x \cdot \cos x}{(\sin x)^2} = \frac{\sin x - x \cos x}{(\sin x)^2} \] ### Step 6: Express \( \frac{du}{dv} \) Now, we can express \( \frac{du}{dv} \) in terms of \( \frac{d}{dx}\left(\frac{x}{\sin x}\right) \): \[ \frac{du}{dv} = \frac{\frac{d}{dx}\left(\frac{x}{\sin x}\right)}{\frac{dv}{dx}} = \frac{\frac{\sin x - x \cos x}{(\sin x)^2}}{\cos x} \] ### Step 7: Simplify This simplifies to: \[ \frac{du}{dv} = \frac{\sin x - x \cos x}{(\sin x)^2 \cos x} \] ### Final Result Thus, the derivative of \( \frac{x}{\sin x} \) with respect to \( \sin x \) is: \[ \frac{du}{dv} = \frac{\sin x - x \cos x}{(\sin x)^2 \cos x} \]

To differentiate \( \frac{x}{\sin x} \) with respect to \( \sin x \), we will use the chain rule and the quotient rule. Here’s the step-by-step solution: ### Step 1: Define the Variables Let: - \( u = x \) - \( v = \sin x \) We need to find \( \frac{du}{dv} \). ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Differentiate (sin x)^(x) w.r.t. x.

Differentiate x^(x^(x)) w.r.t. x.

Differentiate x^(sin^(-1)x) w.r.t. x.

Differentiate (sinx)^(logx) w.r.t. x.

Differentiate sin(x^(2)+5) w.r.t. x.

Differentiate sqrt(sin(e^(x))) w.r.t. x.

Differentiate cos^(2)x^(3) w.r.t x

differentiate of cos^(-1)(sinx) w.r.t. to x

Differentiate x^(x) w.r.t. x.

Differentiate cos{sin(x)^(2)} w.r.t. x.