Home
Class 12
MATHS
sin(xy) + (x)/(y) = x^(2) - y...

`sin(xy) + (x)/(y) = x^(2) - y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(xy) + \frac{x}{y} = x^2 - y \) and find the derivative \( \frac{dy}{dx} \), we will differentiate both sides of the equation with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate both sides**: We start by differentiating the equation: \[ \frac{d}{dx} \left( \sin(xy) + \frac{x}{y} \right) = \frac{d}{dx} \left( x^2 - y \right) \] 2. **Apply the chain rule and product rule**: For the left side: - The derivative of \( \sin(xy) \) using the chain rule is: \[ \cos(xy) \cdot \frac{d}{dx}(xy) = \cos(xy) \left( y + x \frac{dy}{dx} \right) \] - The derivative of \( \frac{x}{y} \) using the quotient rule is: \[ \frac{y \cdot 1 - x \cdot \frac{dy}{dx}}{y^2} = \frac{y - x \frac{dy}{dx}}{y^2} \] So, the left side becomes: \[ \cos(xy) \left( y + x \frac{dy}{dx} \right) + \frac{y - x \frac{dy}{dx}}{y^2} \] For the right side: - The derivative of \( x^2 \) is \( 2x \). - The derivative of \( -y \) is \( -\frac{dy}{dx} \). Thus, the right side becomes: \[ 2x - \frac{dy}{dx} \] 3. **Set the derivatives equal**: Now we have: \[ \cos(xy) \left( y + x \frac{dy}{dx} \right) + \frac{y - x \frac{dy}{dx}}{y^2} = 2x - \frac{dy}{dx} \] 4. **Rearranging the equation**: Combine all terms involving \( \frac{dy}{dx} \) on one side: \[ \cos(xy) y + \frac{y}{y^2} - 2x = -\frac{dy}{dx} - \cos(xy) x \frac{dy}{dx} + \frac{x}{y^2} \frac{dy}{dx} \] 5. **Factor out \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} \left( -\cos(xy) x + \frac{x}{y^2} \right) = 2x - \cos(xy) y - \frac{y}{y^2} \] 6. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{2x - \cos(xy) y - \frac{1}{y}}{-\cos(xy) x + \frac{x}{y^2}} \] ### Final Result: Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{2x - \cos(xy) y - \frac{1}{y}}{-\cos(xy) x + \frac{x}{y^2}} \]

To solve the equation \( \sin(xy) + \frac{x}{y} = x^2 - y \) and find the derivative \( \frac{dy}{dx} \), we will differentiate both sides of the equation with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate both sides**: We start by differentiating the equation: \[ \frac{d}{dx} \left( \sin(xy) + \frac{x}{y} \right) = \frac{d}{dx} \left( x^2 - y \right) ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If sin(xy)+(y)/(x)=x^(2)-y^(2), find (dy)/(dx)

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to

Solve x (dy) / (dx) sin ((y) / (x)) + xy sin ((y) / (x)) = 0 given y (1) = (pi) / (2)

If sqrt (x ^ (2) + y ^ (2)) = e ^ (sin ^ (- 1)) ((y) / (sqrt (x ^ (2) + y ^ (2)))). Prove that (d ^ (2) y) / (dx ^ (2)) = (2 (x ^ (2) + y ^ (2))) / ((xy) ^ (3))

(sin x + sin y) / (sin x-sin y) = tan ((x + y) / (2)) * cot ((xy) / (2))

If x = sin alpha + sin beta, y = cos alpha + cos beta then tan alpha + tan beta = (1) (8xy) / (2 (y ^ 2-x ^ 2) + (x ^ 2 + y ^ 2 ) (x ^ 2 + y ^ 2-2)) (2) (4xy) / ((y ^ 2-x ^ 2) + (x ^ 2 + y ^ 2) (x ^ 2 + y ^ 2-2 )) (3) (8xy) / ((x ^ 2 + y ^ 2) (x ^ 2 + y ^ 2-2)) (4) 4xy

sin x + sin y = (1) / (4), sin x-sin y = (1) / (5) rArr4cot (xy) / (2) =

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. Differentiate (x)/(sinx) w.r.t . sinx.

    Text Solution

    |

  2. Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x, when x ...

    Text Solution

    |

  3. sin(xy) + (x)/(y) = x^(2) - y

    Text Solution

    |

  4. sec(x+y) = xy

    Text Solution

    |

  5. tan^(-1)(x^(2)+y^(2)) = a

    Text Solution

    |

  6. (x^(2)+y^(2))^(2) =xy

    Text Solution

    |

  7. If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, then show that (dy)/(dx).(dx)/(dy)...

    Text Solution

    |

  8. If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx).

    Text Solution

    |

  9. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  10. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |

  11. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  12. If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y), then prove that (dy)/(dx) = ...

    Text Solution

    |

  13. If y = tan^(-1)x, then find (d^(2)y)/(dx^(2)) in term of y alone.

    Text Solution

    |

  14. f(x) = x(x-1)^(2) in [0,1]

    Text Solution

    |

  15. f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

    Text Solution

    |

  16. f(x) = log(x^(2)+2)-log3in [-1,1]

    Text Solution

    |

  17. verify Rolle's theorem for the function f(x)=x(x+3)e^(-x/2) in [-3,0]

    Text Solution

    |

  18. Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2]...

    Text Solution

    |

  19. Discuss the applicability of Rolle's theorem on the function given by ...

    Text Solution

    |

  20. Find the points on the curve y = (cosx-1) in [0,2pi], where the tange...

    Text Solution

    |