Home
Class 12
MATHS
tan^(-1)(x^(2)+y^(2)) = a...

`tan^(-1)(x^(2)+y^(2)) = a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}(x^2 + y^2) = a \), we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** We start with the equation: \[ \tan^{-1}(x^2 + y^2) = a \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(\tan^{-1}(x^2 + y^2)) = \frac{d}{dx}(a) \] 2. **Apply the Chain Rule:** The derivative of \( \tan^{-1}(u) \) is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \). Here, \( u = x^2 + y^2 \): \[ \frac{d}{dx}(\tan^{-1}(x^2 + y^2)) = \frac{1}{1 + (x^2 + y^2)^2} \cdot \frac{d}{dx}(x^2 + y^2) \] Since \( a \) is a constant, its derivative is 0: \[ \frac{d}{dx}(a) = 0 \] 3. **Differentiate \( x^2 + y^2 \):** Now we differentiate \( x^2 + y^2 \): \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 2x + 2y \frac{dy}{dx} \] 4. **Combine the Results:** Substituting back into our differentiation: \[ \frac{1}{1 + (x^2 + y^2)^2} \cdot (2x + 2y \frac{dy}{dx}) = 0 \] 5. **Setting the Equation to Zero:** For the product to equal zero, we can set the term inside the parentheses to zero (since the fraction cannot be zero): \[ 2x + 2y \frac{dy}{dx} = 0 \] 6. **Solve for \( \frac{dy}{dx} \):** Rearranging gives: \[ 2y \frac{dy}{dx} = -2x \] Dividing both sides by \( 2y \): \[ \frac{dy}{dx} = -\frac{x}{y} \] ### Final Result: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{x}{y} \]

To solve the problem \( \tan^{-1}(x^2 + y^2) = a \), we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** We start with the equation: \[ \tan^{-1}(x^2 + y^2) = a ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx" when "tan^(-1)(x^(2)+y^(2))=0 .

(dy)/(dx) if a=tan^(-1)(x^(2)+y^(2))

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

If tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a , show that (dy)/(dx)=(x(1-tana))/(y(1+tana)).

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a,"show that "(dy)/(dx)=(x(1-tana))/(2y(1+tana))

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

If y=tan^(-1) sqrt(x^(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=

If x=e^(tan^(-1))((y-x^(2))/(x^(2))) then (dy)/(dx)=

If x = exp {tan^(-1)((y-x^2)/(x^2))} then dy/dx equals

If x and y are of same sign,then the value of (x^(3))/(2)cos ec^(2)((1)/(2)(tan^(-1)x)/(y))+(y^(3))/(2)sec^(2)((1)/(2)(tan^(-1)y)/(x)) is equal to (x-y)(x^(2)+y^(2)) (b) (x+y)(x^(2)-y^(2))(x+y)(x^(2)+y^(2))*(d)(x-y)(x^(2)-y^(2))