Home
Class 12
MATHS
If y^(x)=e^(y-x), then prove that (dy)...

If ` y^(x)=e^(y-x)`, then prove that `(dy)/(dx) = ((1+logy)^(2))/(logy)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}\) given the equation \(y^x = e^{y - x}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Starting with the equation: \[ y^x = e^{y - x} \] Taking the natural logarithm of both sides: \[ \log(y^x) = \log(e^{y - x}) \] ### Step 2: Simplify using logarithmic properties Using the properties of logarithms, we can simplify both sides: \[ x \log y = y - x \] ### Step 3: Differentiate both sides with respect to \(x\) Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x \log y) = \frac{d}{dx}(y - x) \] Using the product rule on the left side: \[ \log y + x \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} - 1 \] ### Step 4: Rearrange the equation Rearranging the equation gives: \[ x \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} = -1 - \log y \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left( x \frac{1}{y} - 1 \right) = -1 - \log y \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-1 - \log y}{x \frac{1}{y} - 1} \] ### Step 6: Simplify the expression To simplify this expression, we can rewrite it as: \[ \frac{dy}{dx} = \frac{-(1 + \log y)}{\frac{x}{y} - 1} \] Multiplying numerator and denominator by \(-1\): \[ \frac{dy}{dx} = \frac{1 + \log y}{1 - \frac{x}{y}} = \frac{(1 + \log y)}{\frac{y - x}{y}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y(1 + \log y)}{y - x} \] ### Step 7: Use the relation \(y - x = x \log y\) From our earlier work, we know that: \[ y - x = x \log y \] Substituting this into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y(1 + \log y)}{x \log y} \] ### Step 8: Rearranging the expression Now, we can rearrange it to match the required form: \[ \frac{dy}{dx} = \frac{y(1 + \log y)}{x \log y} = \frac{(1 + \log y)^2}{\log y} \] ### Conclusion Thus, we have proved that: \[ \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \]

To prove that \(\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}\) given the equation \(y^x = e^{y - x}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Starting with the equation: \[ y^x = e^{y - x} \] Taking the natural logarithm of both sides: ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, then show that (dy)/(dx).(dx)/(dy)...

    Text Solution

    |

  2. If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx).

    Text Solution

    |

  3. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  4. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |

  5. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  6. If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y), then prove that (dy)/(dx) = ...

    Text Solution

    |

  7. If y = tan^(-1)x, then find (d^(2)y)/(dx^(2)) in term of y alone.

    Text Solution

    |

  8. f(x) = x(x-1)^(2) in [0,1]

    Text Solution

    |

  9. f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

    Text Solution

    |

  10. f(x) = log(x^(2)+2)-log3in [-1,1]

    Text Solution

    |

  11. verify Rolle's theorem for the function f(x)=x(x+3)e^(-x/2) in [-3,0]

    Text Solution

    |

  12. Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2]...

    Text Solution

    |

  13. Discuss the applicability of Rolle's theorem on the function given by ...

    Text Solution

    |

  14. Find the points on the curve y = (cosx-1) in [0,2pi], where the tange...

    Text Solution

    |

  15. Using Rolle's theroem, find the point on the curve y = x (x-4), x in ...

    Text Solution

    |

  16. f(x) = 1/(4x-1) in [1,4]

    Text Solution

    |

  17. f(x) = x^(3)-2x^(2)-x+3 in [0,1]

    Text Solution

    |

  18. Values of c of Rolle's theorem for f(x)=sin x-sin 2x on [0,pi]

    Text Solution

    |

  19. f(x)=sqrt(25-x^(2)) in [1,5]

    Text Solution

    |

  20. Find the point on the parabola y=(x-3)^2, where the tangent is p...

    Text Solution

    |