Home
Class 12
MATHS
If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y),...

If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\) given the equation \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] ### Step 2: Substitute trigonometric identities Let \(x = \sin \alpha\) and \(y = \sin \beta\). Then, we can rewrite the equation using the identities: \[ \sqrt{1 - x^2} = \cos \alpha \quad \text{and} \quad \sqrt{1 - y^2} = \cos \beta \] Thus, the equation becomes: \[ \cos \alpha + \cos \beta = a(\sin \alpha - \sin \beta) \] ### Step 3: Use sum-to-product identities Using the sum-to-product identities for cosine: \[ \cos \alpha + \cos \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] And for sine: \[ \sin \alpha - \sin \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] Substituting these into the equation gives: \[ 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) = a \cdot 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] ### Step 4: Cancel common terms Assuming \(\cos\left(\frac{\alpha + \beta}{2}\right) \neq 0\), we can divide both sides by \(2 \cos\left(\frac{\alpha + \beta}{2}\right)\): \[ \cos\left(\frac{\alpha - \beta}{2}\right) = a \sin\left(\frac{\alpha - \beta}{2}\right) \] ### Step 5: Express \(\alpha - \beta\) This implies: \[ \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\sin\left(\frac{\alpha - \beta}{2}\right)} = a \] Thus, \[ \cot\left(\frac{\alpha - \beta}{2}\right) = a \] From this, we can express \(\alpha - \beta\) as: \[ \alpha - \beta = 2 \cot^{-1}(a) \] ### Step 6: Differentiate both sides Now differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\sin^{-1}(x) - \sin^{-1}(y)) = \frac{d}{dx}(2 \cot^{-1}(a)) \] Using the derivatives: \[ \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = 0 \] Rearranging gives: \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \] ### Step 7: Final result Thus, we have: \[ \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}} \]

To prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\) given the equation \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |

  2. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  3. If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y), then prove that (dy)/(dx) = ...

    Text Solution

    |

  4. If y = tan^(-1)x, then find (d^(2)y)/(dx^(2)) in term of y alone.

    Text Solution

    |

  5. f(x) = x(x-1)^(2) in [0,1]

    Text Solution

    |

  6. f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

    Text Solution

    |

  7. f(x) = log(x^(2)+2)-log3in [-1,1]

    Text Solution

    |

  8. verify Rolle's theorem for the function f(x)=x(x+3)e^(-x/2) in [-3,0]

    Text Solution

    |

  9. Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2]...

    Text Solution

    |

  10. Discuss the applicability of Rolle's theorem on the function given by ...

    Text Solution

    |

  11. Find the points on the curve y = (cosx-1) in [0,2pi], where the tange...

    Text Solution

    |

  12. Using Rolle's theroem, find the point on the curve y = x (x-4), x in ...

    Text Solution

    |

  13. f(x) = 1/(4x-1) in [1,4]

    Text Solution

    |

  14. f(x) = x^(3)-2x^(2)-x+3 in [0,1]

    Text Solution

    |

  15. Values of c of Rolle's theorem for f(x)=sin x-sin 2x on [0,pi]

    Text Solution

    |

  16. f(x)=sqrt(25-x^(2)) in [1,5]

    Text Solution

    |

  17. Find the point on the parabola y=(x-3)^2, where the tangent is p...

    Text Solution

    |

  18. Using mean value theorem, prove that there is a point on the curve y...

    Text Solution

    |

  19. Find the values of p and q , so that f(x)={{:(x^(2)+3x+p, ifxle1),(q...

    Text Solution

    |

  20. If x^m y^n=(x+y)^(m+n), Prove that (dy)/(dx)=y/xdot

    Text Solution

    |