Home
Class 10
MATHS
Solve the following equations for 0^(@)l...

Solve the following equations for `0^(@)lethetale90^(@)` :
(i) `2cos^(2)theta=(1)/(2)`
(ii) `4sin^(2)theta-3=0`
(iii) `sin^(2)theta-(1)/(2)sintheta=0`
(iv) `tan^(2)theta-(sqrt(3)+1)tantheta+sqrt(3)=0`
(v) `sintheta-costheta=0`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step for \(0^\circ \leq \theta \leq 90^\circ\). ### (i) \(2\cos^2\theta = \frac{1}{2}\) 1. **Divide both sides by 2:** \[ \cos^2\theta = \frac{1}{4} \] 2. **Take the square root of both sides:** \[ \cos\theta = \pm \frac{1}{2} \] 3. **Find the angles:** - Since \(\cos\theta = \frac{1}{2}\), \(\theta = 60^\circ\). - We discard \(\cos\theta = -\frac{1}{2}\) because it is not in the range \(0^\circ \leq \theta \leq 90^\circ\). **Solution:** \(\theta = 60^\circ\) ### (ii) \(4\sin^2\theta - 3 = 0\) 1. **Rearrange the equation:** \[ 4\sin^2\theta = 3 \] 2. **Divide both sides by 4:** \[ \sin^2\theta = \frac{3}{4} \] 3. **Take the square root of both sides:** \[ \sin\theta = \pm \frac{\sqrt{3}}{2} \] 4. **Find the angles:** - Since \(\sin\theta = \frac{\sqrt{3}}{2}\), \(\theta = 60^\circ\). - We discard \(\sin\theta = -\frac{\sqrt{3}}{2}\) because it is not in the range \(0^\circ \leq \theta \leq 90^\circ\). **Solution:** \(\theta = 60^\circ\) ### (iii) \(\sin^2\theta - \frac{1}{2}\sin\theta = 0\) 1. **Factor the equation:** \[ \sin\theta(\sin\theta - \frac{1}{2}) = 0 \] 2. **Set each factor to zero:** - \(\sin\theta = 0\) gives \(\theta = 0^\circ\). - \(\sin\theta - \frac{1}{2} = 0\) gives \(\sin\theta = \frac{1}{2}\), which leads to \(\theta = 30^\circ\). **Solution:** \(\theta = 0^\circ, 30^\circ\) ### (iv) \(\tan^2\theta - (\sqrt{3}+1)\tan\theta + \sqrt{3} = 0\) 1. **Let \(x = \tan\theta\):** \[ x^2 - (\sqrt{3}+1)x + \sqrt{3} = 0 \] 2. **Use the quadratic formula:** \[ x = \frac{-(\sqrt{3}+1) \pm \sqrt{(\sqrt{3}+1)^2 - 4\cdot1\cdot\sqrt{3}}}{2\cdot1} \] 3. **Calculate the discriminant:** \[ (\sqrt{3}+1)^2 - 4\sqrt{3} = 3 + 2\sqrt{3} + 1 - 4\sqrt{3} = 4 - 2\sqrt{3} \] 4. **Substituting back:** \[ x = \frac{\sqrt{3}+1 \pm \sqrt{4 - 2\sqrt{3}}}{2} \] 5. **Calculate the values of \(x\) (i.e., \(\tan\theta\)) and find \(\theta\):** - Solve for \(x\) and then find \(\theta\) using \(\tan^{-1}(x)\). **Solution:** \(\theta = 60^\circ, 45^\circ\) ### (v) \(\sin\theta - \cos\theta = 0\) 1. **Rearrange the equation:** \[ \sin\theta = \cos\theta \] 2. **Find the angle where sine and cosine are equal:** - This occurs at \(\theta = 45^\circ\). **Solution:** \(\theta = 45^\circ\) ### Summary of Solutions: 1. \( \theta = 60^\circ \) 2. \( \theta = 60^\circ \) 3. \( \theta = 0^\circ, 30^\circ \) 4. \( \theta = 60^\circ, 45^\circ \) 5. \( \theta = 45^\circ \)
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 E|16 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 C|42 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation: 3cos^(2)theta-2sqrt(3)sin theta cos theta-3sin^(2)theta=0

solve the following trigonometric equations for 0<=theta<=90 (i) (tan^(2)theta+cot^(2)theta)=2 (ii) (2sin^(2)theta+cos^(2)theta)=(2sqrt(2)sin theta cos theta)

Solve the following equation (i) 5cos2theta+2cos^(2)"(theta)/(2)+1=0 , -(pi)/(2) lt theta lt (pi)/(2) (ii) sin7theta+sin4theta+sintheta=0 , 0 le theta le pi (iii) tantheta+sectheta=sqrt(3) , 0 le theta le 2pi

Solve each of the following equations when 0o

Solve the equation 2cos^(2)theta+3sin theta=0

Solve the following equations : i) tantheta=cottheta , ii) cos2theta=2sin^(2)theta iii) tan3theta=-sqrt(3) , iv) sin2theta-costheta=0 v) sec^(2)2theta=1-tan2theta

Solve the following trigonometric equations, (i) 2cos^(2)theta-5"sin" theta+1=0 (ii) 2"sin"^(2)theta-5"sin" theta+1=0 (ii) 2"sin"^(2)theta+sqrt(3)costheta+1=0 (iii) 2cos^(2)theta=3"sin"theta .

If sintheta-costheta=0 , then sin^3theta+cos^3theta=?

Solve that following equations: quad tan^(2)theta+(1-sqrt(3))tan theta-sqrt(3))=0