Home
Class 10
MATHS
Find the value of (1-sin^(2)A)(1+tan^(2)...

Find the value of `(1-sin^(2)A)(1+tan^(2)A)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1 - \sin^2 A)(1 + \tan^2 A) \), we can use some trigonometric identities. Let's solve it step by step. ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ 1 - \sin^2 A = \cos^2 A \] So we can rewrite the expression: \[ (1 - \sin^2 A)(1 + \tan^2 A) = \cos^2 A (1 + \tan^2 A) \] ### Step 2: Use the Identity for Tangent We also know that: \[ \tan^2 A = \frac{\sin^2 A}{\cos^2 A} \] Thus, we can express \(1 + \tan^2 A\) as: \[ 1 + \tan^2 A = 1 + \frac{\sin^2 A}{\cos^2 A} = \frac{\cos^2 A + \sin^2 A}{\cos^2 A} \] Using the Pythagorean identity again, \( \cos^2 A + \sin^2 A = 1 \): \[ 1 + \tan^2 A = \frac{1}{\cos^2 A} \] ### Step 3: Substitute Back into the Expression Now substituting this back into our expression: \[ \cos^2 A (1 + \tan^2 A) = \cos^2 A \cdot \frac{1}{\cos^2 A} \] ### Step 4: Simplify the Expression Now we can simplify: \[ \cos^2 A \cdot \frac{1}{\cos^2 A} = 1 \] ### Final Answer Thus, the value of \( (1 - \sin^2 A)(1 + \tan^2 A) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

Find the value of : sin^() (2 tan^(-1). 1/4) +cos (tan^(-1)2sqrt(2))

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Find the value of (1-tan^(2)22(1^(@))/(2))/(1+tan^(2)22(1^(@))/(2)) .

What is the value of sin^(2)theta+(1)/(1+tan^(2)theta)?

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If tantheta.tan2theta=1 , then find the value of sin^(2)2theta+tan^(2)2theta .

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)