Home
Class 10
MATHS
Find the value of (1-cos^(2)A)*"cosec"^(...

Find the value of `(1-cos^(2)A)*"cosec"^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((1 - \cos^2 A) \cdot \csc^2 A\), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] From this, we can express \(\sin^2 A\) as: \[ \sin^2 A = 1 - \cos^2 A \] ### Step 2: Substitute \(\sin^2 A\) into the expression Now, we can substitute \(\sin^2 A\) into our expression: \[ (1 - \cos^2 A) \cdot \csc^2 A = \sin^2 A \cdot \csc^2 A \] ### Step 3: Recall the definition of \(\csc^2 A\) The cosecant function is defined as: \[ \csc A = \frac{1}{\sin A} \] Thus, we have: \[ \csc^2 A = \frac{1}{\sin^2 A} \] ### Step 4: Substitute \(\csc^2 A\) into the expression Now, substituting \(\csc^2 A\) into our expression gives: \[ \sin^2 A \cdot \csc^2 A = \sin^2 A \cdot \frac{1}{\sin^2 A} \] ### Step 5: Simplify the expression When we multiply \(\sin^2 A\) by \(\frac{1}{\sin^2 A}\), we get: \[ \sin^2 A \cdot \frac{1}{\sin^2 A} = 1 \] ### Final Answer Thus, the value of \((1 - \cos^2 A) \cdot \csc^2 A\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of cot^(2)A - "cosec"^(2)A.

Find the value of (1+cos A)(1-cos A)cosec^(2)A .

If 3cotA=4 , find the value of ("Cosec"^(2)A+1)/("Cosec"^(2)A-1) .

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

Find the value of (sqrt(cosec^(2)A-1))/(cot A+tanA) ?

Without expanding, find the value of |(cosec^(2)theta,cot^(2)theta,1),(cot^(2)theta,cosec^(2)theta,-1),(42,40,2)|